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Abstract

The notion of strongly principal ideal groups for associative rings was
introduced in [3] and its several properties were studied in [2] by using
cyclic groups. Motivated by these concepts, we introduce here *-cyclic
groups and strongly principal *-ideal ring groups for rings with involu-
tion and investigate their structural properties by attaching involution
on their corresponding ground groups.
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1. Introduction

Let P be a ring property. A group G is said to be P−group, in the sense
of Feigelstock and Schlussel [3] (see also [2]), if there exists a P−ring R such
that G = R+. A group G is said to be nil, again in the sense of the above
cited references, in case the only ring R with G = R+ is the zero ring. If G
is not nil and every ring R, with R2 �= 0 and G = R is a P−ring, then G is
said to be strongly P − group. By using these concepts, strongly principal ide-
als are thoroughly investigated. For rings with involution, we introduce here
the notion of strongly principal *-ideal ring groups and study their structural
properties. To achieve this goal and to make the calculations simpler we have
introduced *-cyclic groups, which is generated by an element a and its involu-
tary image a∗ in the group. Moreover, we study some structural properties of
*-cyclic groups as well. In particular a formula (Corollary 3.2) for computing
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the number of involutions for abelian groups is obtained. Their direct sum and
direct summand propert ies are also outlined. We have used *-cyclic groups
to obtain various properties and classifications of (strongly) principal *-ideal
ring groups. In particular, it is noticed in Theorem 4.7 that there exists no
mixed strongly principal *-ideal ring groups.

Throughout we assume that all groups are additive abelian and all rings
are associative. If R is a ring, then its underlying additive group is denoted by
G = R+. If x ∈ R, then 〈x〉 (respectively (x)) means the ideal of R (respectively
the subgroup of G) generated by x.

A ring R (respectively a group G) together with a unary operation ∗ is said
to be a ring (respectively, a group) with involution in case for all a, b ∈ R,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, and (ab)∗ = b∗a∗

(respectively, for all a, b ∈ G, (a∗)∗ = a, and (a + b)∗ = a∗ + b∗).Thus the
involution on R is an antiisomorphism of order two.

For commutative rings, the identity mapping is clearly an involution. Nev-
ertheless, every group has at least one involution, namely, the unary operation
of taking inverse; that is g∗ = −g for every g ∈ G.

Let a group G be decomposed into its subgroups as G = H ⊕ K. If G has
an involution ∗, then ∗ is said to be changeless involution in case g∗ = (h∗, k∗),
∀ g = (h, k) ∈ H ⊕ K (see[1]).

A group G is said to be *-cyclic if for some a ∈ G, G = (a) + (a∗), which
indeed one may rewrite as G = (a)∗ = (a, a∗). Clearly, every cyclic group is
*-cyclic, but the converse is not true in general (see an example in Section 3).

A nonzero ideal I of an involution ring R (a nonzero subgroup H of an
involution group G) which is closed under involution is termed as a *-ideal
(I �∗ R) (respectively a *-subgroup (H ≤∗ G)); that is

I∗ = {a∗ ∈ R | a ∈ I } ⊆ I .

A subring A of R is said to be a biideal of R if ARA ⊆ A and a *-biideal
if, in addition, it is closed under the involution of R. A is called a principal
*-biideal (see [7]), if

A = 〈a〉∗bi = Za + Za∗ + aRa + a∗Ra + aRa∗ + a∗Ra∗.

On the same ground a principal *-ideal is defined. A principal *-ideal I is
a *-ideal generated by a single element. This means that, for some a ∈ R, one
may write:

I = 〈a〉∗ = Za + Za∗ + aR + Ra + RaR + a∗R + Ra∗ + Ra∗R.
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Thus, it can easily be deduced that

I = 〈a〉 + 〈a∗〉 = 〈a, a∗〉 .

A ring with involution ∗ is said to be principal *-ideal ring if each *-ideal is a
principal *-ideal.

A groupG is called strongly principal *-ideal ring group, if G is not nil and
every ring R with involution satisfying R2 �= 0 and G = R+, is a principal
*-ideal ring.

Let f : A −→ B be a group or a ring homomorphism. If A and B are
equipped with some involutions ∗A and ∗B such that f(a∗A) = [f(a)]∗B , then
we say that f is an involution preserved homomorphism. If f is an involution

preserved isomorphism, then we will write A
∗∼= B. It is clear that *-subgroups

and *-ideals are preserved under such isomorphisms. Moreover, if A ∼= B, as
a group or a ring, then every involution on A induced an involution on B.

In sections 2 and 3,we give some elementary properties for *-cyclic groups.
Furthermore ,in section 4,(strongly) principal *-ideal ring groups are widely
studied.

2. Some Elementary Properties

Lemma 2.1. Let G be a group with involution ∗. Then the following sub-
groups of G are closed under the involution ∗.

(a) nG, ∀n ∈ Z.
(b) The torsion subgroup Gt of G.
(c) For any prime p, every p-primary subgroup Gp of G.
(d) The maximal divisible subgroup of G.
(e) The subgroup G[m] = {g ∈ G | mg = 0} of G, for some integer m.

Proof : (a) Let x ∈ nG. Then x = ng for some g ∈ G, hence x∗ = ng∗ and
g∗ ∈ G. So x∗ ∈ nG and nG is closed under involution.

(b) Let x ∈ Gt. Then there exists a positive integer n such that nx = 0.
Hence nx∗ = 0 and x∗ ∈ G follows..

(c) Let x ∈ Gp. Then |x| = pn for some positive integer n and pnx = 0,
implies pnx∗ = 0. Hence x∗ ∈ Gp.

(d) Let D be the maximal divisible subgroup of G. If x ∈ D, then there
exists y ∈ D such that x = ny for any positive integer n ,whence x∗ = ny∗.
Since D is the maximal divisible subgroup, x∗, y∗ ∈ D, therefore D is closed
under involution.

(e) Let x ∈ G[m], then mx = 0,whence mx∗ = 0 and x∗ ∈ G[m] follows.�

Corollary 2.2. In every involution ring R, nR, R[n], Rt, Rp and the
maximal divisible ideal D are *-ideals.



688 U. A. Aburawash and W. M. Fakieh

Proof : It is clear that G = R+ has involution; the same involution of R.
So from Lemma 2.1, nR, R[n], Rt, Rp and the maximal divisible subgroup D
are *-subgroups of G. Since nR, R[n], Rt, Rp,and D are ideals in R (see [5]),
hence nR, R[n], Rt, Rp and D are *-ideals in every involution ring R. �

Lemma 2.3. (a) Every direct sum of involution groups is an involution
group.

(b) Every direct summand of a group with a changeless involution is an
involution group.

(c) If a direct summand of a group has an involution, then the group has
an involution.

Proof : (a) Let G = H ⊕ K, where H and K are groups with involutions
∗H and ∗K , respectively. Then for every g = (h, k) ∈ G, where h ∈ H and
k ∈ K,define the involution ∗G on G by

g∗G = (h∗H , k∗K ).

Because of the unique representation of each element, ∗G becomes a unary
operation on G. Further,

(g∗G)∗G = ((h∗H )∗H , (k∗K )∗K )) = (h, k) = g.

Assume that gi ∈ G, with gi = (hi, ki), where hi ∈ H and ki ∈ K. Then

(g1 + g2)
∗G = ((h1 + h2)

∗H , (k1 + k2)
∗K ) = ((h∗H

1 + h∗H
2 ), (k∗K

1 + k∗K
2 ))

= (h∗H
1 , k∗K

1 ) + (h∗H
2 , k∗K

2 ) = g∗G
1 + g∗G

2 .

Hence ∗G is an involution on G ;it is in fact the changeless involution on G .
The proof can analogously be extended to finite as well as to arbitrary

direct sums.

(b) Let G = H ⊕ K. Set H ′ = H ⊕ 0 and K ′ = 0 ⊕ K. Clearly, H ′ and
K ′ are direct summands and subgroups of G. Assume that ∗ is the changeless
involution on G. Then ∗ |H′(involution on G restricted to H ′) is an involution

on H ′ and ∗ |K ′is an involution on K ′. Also, H
∗∼= H ′ and K

∗∼= K ′. Hence (b)
is proved.

(c) Let G = H ⊕ K and H be a group with an involution ∗H . Then for
every g = (h, k) ∈ G, where h ∈ H and k ∈ K, define an operation ∗G on G
by

g∗G = (h∗H , k).

Clearly, ∗G is the changeless involution on G.�
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Parts (a ) and ( b) of Lemma 2.3 can easily be extended to rings, subrings
and ideals. But for part (c) we need the following modification.

Corollary 2.4. Let R = A ⊕ B, where A and B are rings in which B is
commutative. Then R has a (changeless) involution if and only if G has an
involution.

Proof : One way is clear from Lemma 2.3-(b). Assume that A has an invo-
lution ∗A. Define ∗R on R by

r∗R = (a∗A, b)

Then, ∗R is a unary operation on R and for r1 = (a1, b1), r2 = (a2, b2) ∈ R,

(r1r2)
∗R = ((a1a2)

∗A , b1b2) = ((a∗A
2 a∗A

1 ), b2b1) = r∗R
2 r∗R

1 .

The rest is as in Lemma 2.3-(c). �

3. Cyclic Groups with Involution

Let G be an infinite cyclic group. Following [8], there are two involutions on
G, the identity involution and the involution a∗ = −a ; of taking inverse. If G is
a finite cyclic group of order n, then Aut(G) consists of all automorphisms, αk :
a → ka, where 1 ≤ k ≤ n and (k, n) = 1. Moreover,

Aut(G) ∼= U ( /Zn)

(the multiplicative group of units of the ring /Zn). Since

αn−1 : a → (n − 1) a

is the only automorphism of order 2, Aut(G) has only two automorphisms of
order two; the identity mapping and αn−1 (of taking inverse), so G has only
two involutions.

From this introduction,we note that every cyclic group has two involutions;
namely the identity mapping and the mapping of taking inverse. Moreover,
every subgroup of a cyclic group is closed under these involutions.

Proposition 3.1. Let G be an additive abelian group, G = H ⊕K, and let
H and K be cyclic subgroups of G. If (|H| , |K|) �= 1, then

(a) G has exactly four involutions, namely:

g∗ = (h, k), g∗ = (−h, k), g∗ = (h,−k), g∗ = (−h,−k) and g∗ = (h, k).
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(b) Every subgroup of G is closed under involution.

Proof : (a) By Lemma 2.3, H and K are *-subgroups. Since H and K are
cyclic, H and K,each, has two involutions; the identity involution and ∗ : a →
−a. Hence again by Lemma 2.3, G has exactly the given four involutions.

(b) By Theorem 8.1 in [4], any subgroup H of G is a direct sum of two
cyclic subgroups, or it is cyclic. Hence by (a), H is a *-subgroup. �

The following immediate result gives the number of involutions of abelian
groups.

Corollary 3.2. Let G be an additive abelian group. If G =
n⊕

i=1

Hi, where

each Hi is a cyclic subgroup of G such that (|Hi| , |Hj |) �= 1, 1 ≤ i, j ≤ n, then
G has 2n involutions.

Proposition 3.3. Let R be a ring with involution such that R+ = G. Then
R has only the identity involution in case any one of the following holds:

(1) G is a cyclic group.
(2) G is a direct sum of cyclic subgroups.

Proof : (1) Let G be cyclic. Since R is an involution ring, G has either the
identity involution or the involution ∗ : a → −a. However, −(ab) �= (−b)(−a),
for all a, b ∈ R. Hence R has the identity involution only.

(2) If G = H ⊕ K, and H and K are cyclic subgroups of G, then by
Proposition 3.1, G has four involutions. But then again by (1) , G has only
one involution. �

Definition 3.4. By a *-cyclic group H , we mean a *-group generated by
one element.

This means that,

H = (a)∗ = (a, a∗) = (a) + (a∗).

Let G be a cyclic group, then G = (a) = (a∗) and G = (a) + (a∗), so G is
a *-cyclic group. The converse of this fact is not always true.

For example in the group

(M2×2(Z3), +)

with the transposed involution, let a =

(
0 1
0 0

)
, whence a∗ =

(
0 0
1 0

)
.

Obviously, the *-cyclic group H = (a) + (a∗) is not a cyclic group.
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Proposition 3.5. Let G = H ⊕ K. If H and K are *-cyclic groups such
that H = (a)∗, K = (b)∗, (|a| , |b|) = 1. Then G is *-cyclic.

Proof : The given condition

(|a| , |b|) = 1

implies that (a) ⊕ (b) is a cyclic group generated by (a, b) and (a∗) ⊕ (b∗) is a
cyclic group generated by (a∗, b∗). But,

G = H ⊕ K = (a) + (a∗) ⊕ (b) + (b∗) = (a) ⊕ (b) + (a∗) ⊕ (b∗).

Hence G is *-cyclic with G = ((a, b))∗.�

Proposition 3.6. If G is a *-cyclic group, then any *-subgroup of G is a
*-cyclic subgroup.

Proof : A *-cyclic group is either torsion or torsion free.First assume that
G is torsion free and let

G = (a)∗ = (a, a∗).

If

(a) ∩ (a∗) �= 0,

then na∗ = ma �= 0, for some integers m and n. This implies na = ma∗. So,
na−na∗ = ma∗−ma, from which n(a−a∗) = m(a∗−a) = −m(a−a∗) and so
(n + m)(a− a∗) = 0. Since G is torsion free, a− a∗ = 0 implies a = a∗,whence
(a) ∩ (a∗) = 0 and G = (a) ⊕ (a∗).

Secondly assume that G is torsion, G = (a) + (a∗), and |a| = |a∗| = k.Let
g ∈ G, g = ma+na∗, for some integers m,n. Since k(ma+na∗) = 0,it follows
that |g| ≤ k, and a, a∗have maximal orders. Hence G = (a)⊕(a∗), from[6],page
81.Thus in both cases,G = (a) ⊕ (a∗).

If H ≤∗ G, then H = (b) ⊕ (c), where (b) ≤ (a) and (c) ≤ (a∗). Then
(b) = (ma) and (c) = (na∗) ,whence

H = (ma) ⊕ (na∗).

Since H is *-subgroup, ma∗ + na ∈ H . But ma∗ ∈ (na∗), so m > n and
na ∈ (ma), so n > m. Therefore n = m and

H = (na) ⊕ (na∗).

Hence H = (na)∗ and H is a *-cyclic subgroup of G. �
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Proposition 3.7. Let x1 and x2 be elements of a group G such that a
prime p| |x1| , |x2| . If G = (x1)

∗ ⊕ (x2)
∗, then there exist y1, y2 ∈ G such that

(y1)
∗ ≤ (x1)

∗ and (y2)
∗ ≤ (x2)

∗.

Proof : Let

G = (x1) + (x∗
1) ⊕ (x2) + (x∗

2
).

If p is a prime such that p | |x1|, then there exists y1 ∈ (x1) such that, p| |y1|
and |y1| divides |x1| . Consequently,

(y1) ≤ (x1) and (y∗
1
) ≤ (x∗

1
).

Similarly there is y2 ∈ (x2) such that

(y2) ≤ (x2) and (y∗
2) ≤ (x∗

2).

Hence, it is concluded that

(y1) + (y∗
1) ≤ (x1) + (x∗

1)

and

(y2) + (y∗
2) ≤ (x2) + (x∗

2),

that is, (y1)
∗ ≤ (x1)

∗ and (y2)
∗ ≤ (x2)

∗. �

4. Strongly principal *-Ideal Ring Groups.

As it is mentioned before that the notion of strongly principal ideal groups
for associative rings was introduced and investigated thoroughly in [2] and [
3]. Motivated by these concepts, we introduce here strongly principal *-ideal
ring groups for rings with involution and study their structural properties by
attaching involution on their corresponding ground groups.

Definitions 4.1. Let R be a ring with involution. For some a ∈ R, one
may write:

I = 〈a〉∗ = Za + Za∗ + aR + Ra + RaR + a∗R + Ra∗ + Ra∗R.

Clearly I is an ideal of R closed under involution and is called the principal
*-ideal generated by a.

One may deduce that

I = 〈a〉 + 〈a∗〉 = 〈a, a∗〉 .
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A ring with ivolution ∗ is a principal *-ideal ring if each *-ideal is a principal
*-ideal. Moreover, we say that a group G is strongly principal *-ideal ring
group, if G is not nil, and every ring R with involution satisfying R2 �= 0, and
G = R+, is a principal *-ideal ring.

Lemma 4.2. Let G = H ⊕ K, H �= 0, K �= 0, be a strongly principal
*-ideal ring group. Then H and K are either both *-cyclic or both nil.

Proof : Suppose that H is not nil. Let S be a *-ring with S+ = H and S2

�= 0 and let T be the zero ring on K. By Corollary 2.5, the ring direct sum
R = S ⊕ T is a ring with involution satisfying R+ = G and R2 �= 0. Since T
is a *-ideal in R, T = 〈x〉∗. Clearly K = T+ = (x)∗. Therefore K is not nil.
Interchanging the roles of H and K yields that H is *-cyclic. �

Corollary 4.3. Let G = H ⊕ K, H �= 0, K �= 0, be a strongly principal
*-ideal ring group. Then H and K are *-cyclic.

Proof : It suffices to negate that H and K are both nil. Let R = (G, ·) be
a ring with involution satisfying R2 �= 0.

1) Suppose that R2 ⊆ K. There exist h0 ∈ H , k0 ∈ K, such that R =
〈h0 + k0〉∗.

Let h ∈ H , since h ∈ R, there exist integers n and m, and x ∈ R2 such
that

h = n(h0 + k0) + m(h0 + k0)
∗ + x.

However, x ∈ K, so

h = nh0 + mh∗
0

and H is *-cyclic, contradicting the fact that H is nil.
2) Suppose that R2 � K. For all g1, g2 ∈ G, define g1 ◦ g2 = πH(g1 · g2),

where πH is the natural projection of G onto H . Since

(g1 ◦ g2)
∗ = (πH(g1 · g2))

∗ = πH(g1 · g2)
∗ = πH(g∗

2 · g∗
1) = g∗

2 ◦ g∗
1,

hence S = (G, ◦) is a ring with involution satisfying S2 ⊆ H . The argument
employed in (1) yields that K is *-cyclic which contradicts the fact that K is
nil.�

Theorem 4.4. Let G �= 0 be a torsion group. If G is cyclic or G ∼=
(x1) ⊕ (x2), where x1 �= x2, |x1| = |x2| = p is a prime, then G is strongly
principal *-ideal ring group.

Proof : Assume that either G is cyclic or as given in the hypothesis. Then
by Proposition. 3.3, any ring R with R+ = G has only the identity involution.
By [2, Theorem 4.2.3] ,G is strongly principal *-ideal ring group.�
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Theorem 4.5. Let G be a torsion strongly principal *-ideal ring group.
Then G is *-cyclic group or G = (x1)

∗ ⊕ (x2)
∗, with |xi| = p, a prime, where

i = 1, 2.

Proof : Suppose that G is a strongly principal *-ideal ring group. Let G
be indecomposable. Then by [2, Corollary 1.1.5], G ∼= Zpn , p a prime, 1 ≤ n ≤
∞. If n = ∞, then G is divisible by [2, Proposition.1.1.3] and so G is nil, by
[2, Theorem 2.1.1], which is a contradiction. Hence G is cyclic and so *-cyclic.

Next, suppose that G = H ⊕ K, H �= 0, K �= 0, by Lemma 4.2, either H
and K are both *-cyclic or both nil. If H and K are nil, then they are both
divisible, so G is nil, by [2, Theorem 2.1.1] which is again a contradiction.
Therefore G = (x1)

∗ ⊕ (x2)
∗, with |xi| = ni, i = 1, 2. If (n1, n2) = 1, then G is

*-cyclic, by Proposition. 3.5. Otherwise, let p be a prime divisor of (n1, n2).
Then by Proposition. 3.7,

G = (y1)
∗ ⊕ (y2)

∗ ⊕ H

with

|yi| = pmi , i = 1, 2, and 1 ≤ m1 ≤ m2.

Since (y1)
∗ ⊕ (y2)

∗ is neither * cyclic nor nil, H = 0 by Lemma 4.2. The
products

yi.yj = pm2−−1y2, yi.y
∗
j = 0 where i, j = 1, 2,

induce a *-ring structure R on G with R2 �= 0. Therefore, R = 〈s1y1 + s2y2〉∗,
s1 and s2are integers. Every element x ∈ R has the form:

x = kxs1y1 + (kxs2 + mxp
m2−1)y2 + k′

xs1y
∗
1 + (k′

xs2 + m′
xp

m2−1)y∗
2

where kx, mx, k′
x, and m′

x are integers. In particular,

y1 = ky1s1y1, and y2 = (ky2s2 + my2p
m2−1)y2.

Hence if m2 > 1, then

ky1s1 ≡ 1(modp), and ky2s2 + my2p
m2−1 ≡ 1(mod p),

which imply that p � ky1and p � s2. However

ky1s2 + my1p
m2−1 ≡ 0(mod p).

So either p|ky1 or p|s2 which is a contradiction. Therefore m1 = m2 = 1.�
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Theorem 4.6. Let G be a torsion group which is either *- cyclic or
G ∼= (x1)

∗ ⊕ (x2)
∗ with |xi| = p ,a prime,where i = 1, 2. Then for any *-ring

R with R+ = G, R is a principal *-ideal ring.

Proof : By Proposition. 3.6, non trivial *-cyclic groups are clearly principal
*-ideal ring groups. Let

G = (x1)
∗ ⊕ (x2)

∗

with

|xi| = p, i = 1, 2

and let R be a *-ring with R+ = G and R2 �= 0. If I is a proper *-ideal in R,
then |I| = 1, p, or p2, and so I is a *- ideal generated by one element, we may
assume that R �=< xi >∗, i = 1, 2. Hence

< xi >∗+= (xj)
∗

for i = 1, 2. This implies the following three relations:

xixj = kixi, 0 ≤ ki < p, if i = j, i = 1, 2, either k1 �= 0 or k2 �= 0,

xixj = 0, if i �= j, i, j = 1, 2,

and

x∗
i xj = 0, for all i, j = 1, 2.

Put

I = 〈x1 + x2〉∗ .

Suppose that k1 �= 0. Let r, s be integers such that rk1 + sp = 1. Then

rx1(x1 + x2) = rk1x1 = (1 − sp)x1 = x1

and

r(x1 + x2)
∗x∗

1 = rk1x
∗
1 = (1 − sp)x∗

1 = x∗
1.

Hence x1 ∈ I and x∗
1 ∈ I, so

(x1 + x2) − x1 = x2 ∈ I

and

(x1 + x2)
∗ − x∗

1 = x∗
2 ∈ I.
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Therefore I = R. If k2 �= 0, then the above argument, reversing the roles of
the indices 1, 2 again yields I = R. �

Theorem 4.7. There are no mixed strongly principal *-ideal ring groups.

Proof : Let G be a mixed strongly principal *-ideal ring group. G is
decomposable by [2, Corollary.1.1.5], so by Lemma 4.2, G = H ⊕ K, H �=
0, K �= 0, with H and K both *-cyclic, or both nil.

1) Suppose that H and K are both nil. There are no mixed nil groups by
[2, Theorem 2.1.1]. So, we may assume that H is a torsion group, and that K
is torsion free. Let R be a *-ring with R+ = G and R2 �= 0. Clearly H is a
*-ideal in R and so H = 〈h〉∗. Let |h| = m, then mH = 0. By [2, Theorem
2.1.1], H is divisible, and therefore not bounded, a contradiction.

2) Suppose that H = (x)∗ and K = (e)∗ with |x| = n, and |e| = ∞. The
products

x2 = xe = ex = e∗x = ex∗ = xe∗ = x∗e = 0 and e2 = ne

induce a *-ring structure R on G satisfying R2 �= 0. Therefore there exist
integers s and t such that R = 〈sx + te〉∗. Every y ∈ R is of the form

y = mysx + (my + uyn)te + m′
ysx

∗ + (m′
y + u′

yn)te∗,

with my, m′
y, uyand u′

y integers. In particular, (me + uen)t = 1. Hence t =
±1. Therefore, mx + uxn = 0 and so n|mx. However, x = mxsx = 0, is a
contradiction. �

Theorem 4.8. Let G be a torsion free strongly principal *-ideal ring group.
Then G is either indecomposable, or is the direct sum of two nil groups.

Proof : By Lemma 4.2. it suffices to negate that

G = (x1)
∗ ⊕ (x2)

∗, xi �= 0, i = 1, 2.

Suppose this is so, the products:

xixj = 3xi and x∗
i xj = 0 for i = j = 1, 2,

xixj = x∗
i xj = 0, for i �= j

induce a ring structure R on G with involution * satisfying R2 �= 0. Therefore
there exist nonzero integers k1, k2 such that

R = 〈k1x1 + k2x2〉∗ .
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Every x ∈ R is of the form:

x = (rx + 3sx)k1x1 + (rx + 3tx)k2x2 + (r′x + 3s′x)k1x
∗
1 + (r′x + 3t′x)k2x

∗
2

where rx, r′x, sx, s
′
x, tx, t′x are integers.From

rx1 + 3sx1 = ±1,

it follows that

rx1 ≡ ±1(mod 3).

However,

rx1 + 3tx1 = 0

implies

rx1 ≡ 0(mod 3),

which is a contradiction.�

Lemma 4.9. Let G and H be torsion free groups with G
∗∼= H . Then G

is a strongly principal *-ideal ring group if and only if H is.

Proof : Let f : H −→ G be a *-isomorphism such that G is a strongly
principal *-ideal ring group. Let R = (H, ·) be a ring with involution ∗ such
that R2 �= 0. The product

g1 ◦ g2 = f(h1 · h2),

where, g1 = f(h1) and g2 = f(h2), for all g1, g2 ∈ G, induces a ring structure
S = (G, ◦) with S2 �= 0. Then G is a group with involution ∇. Since

(g1 ◦ g2)
∇ = [f(h1 · h2)]

∇ = f(h1 · h2)
∗ = f(h∗

2 · h∗
1) = g∇

2 ◦ g∇
1 .

Hence S has an involution. Let I �∗ R, then f(I) �∇ S and there exists
g ∈ G such that f(I) = 〈g〉∇ , with g = f(h), h ∈ H. We claim that
I = 〈h〉∗ . Clearly 〈h〉∗ ⊆ I. Let x ∈ I , then f(x) ∈ 〈g〉∇ and so

f(x) = ng∇ + mg + g ◦ y1 + g∇ ◦ y2 + z1 ◦ g + z2 ◦ g∇

where m,n are integers and y1 = f( h´
1) ,y2 = f (h´

2) , z1 = f (h´́
1) and z2 = f

(h´́
2) ∈ G .Thus

f (x) = nf (h∗) + mf (h) + f (h · h´
1) + f (h∗ · h´

2) + f (h´́
1 · h) + f (h´́

2 · h∗)

= f (nh∗ + mh + h · h´
1 + h∗ · h´

2 + h´́
1 · h + h´́

2 · h∗)
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which concludes that x ∈ 〈h〉∗ . Hence I = 〈h〉∗. �

Theorem 4.10: Let G be a torsion group. Then the following are equiva-
lent:

(1) G is bounded
(2) G is a principal *-ideal ring group.

Proof : (1) ⇒ (2): Suppose that nG = 0 and n is a positive integer. Then

G = ⊕
p|n

[
⊕
αk

Zpk

]

where p is a prime with pk | n and αk a cardinal number ,by [2, Proposition
1.1.9]. For each pk | n, put

Hpk = ⊕
αk

Zpk .

Then

G = ⊕
pk|n

Hpk,

and there exists a commutative principal ideal ring Rpk with unity and

R+
Pk = Hpk

for all pk | n ,by [5, Lemma 122.3]. The ring direct sum

R = ⊕
pk|n

Rpk

is a principal *-ideal ring with the identity involution satisfying R+ = G and
R2 �= 0.

(2) ⇒ (1): Let R be a principal *-ideal ring with R+ = G. Then R = 〈x〉∗
and n = |x|. So nG = 0. �

Theorem 4.11: Let G be a mixed group. Then
(1) If G is a principal *-ideal ring group, then Gt is bounded and G/Gt is

a principal *-ideal ring group.
(2) Conversely, if Gt is bounded and if there exists a unital principal *-ideal

ring with additive group G/Gt, then G is a principal *- ideal ring group.

Proof : (1) Let R be a principal *-ideal ring with R+ = G. Since Gt is
a *-ideal in R, Gt = 〈x〉∗ and nGt = 0, n = |x|. Now G = Gt ⊕ H and
H ∼= G/Gt by [2, Proposition. 1.1.2]. Now

R = 〈a + y〉∗ , a ∈ Gt, 0 �= y ∈ H.
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Suppose that R2 ⊆ Gt and let h ∈ H . Then there exist integers kn, k′
n such

that,

h = kny + k′
ny∗ + b,

with b ∈ R2. Since R2 ⊆ Gt, b = 0, and

h = kny + k′
ny∗.

Therefore H = (y)∗. By Proposition 3.6, H is a principal *- ideal ring group.
If R2 � Gt, then R̄ = R/Gt is a principal *-ideal ring with R̄+ ∼= G/Gt, and

R̄2 �= 0.

(2) Conversely, suppose that Gt is bounded, and that there exists a unital
principal *-ideal ring T with T+ = G/Gt. Hence

G ∼= Gt ⊕ G/Gt,

by [2, Proposition. 1.1.2]. There exists a principal *-ideal ring S with unity
and * is the identity involution such that S+ = Gt, from [5, Lemma 122.3].
Let

R = S ⊕ T

with e, f the unities of S and T, respectively. Then R is a ring with involution
*, by Corollary 2.5. Let I be a *-ideal in R, then

I = (I ∩ S) ⊕ (I ∩ T ).

Now, I ∩ S �∗ S and so

I ∩ S = 〈x〉∗ .

Similarly

I ∩ T =< y >∗ .

Clearly,

〈x + y〉∗ ⊆ I.

However,

x = e(x + y) ∈ 〈x + y〉∗ , x∗ = e(x + y)∗ ∈ 〈x + y〉∗

and

y = f(x + y) ∈ 〈x + y〉∗ , y∗ = f(x + y)∗ ∈ 〈x + y〉∗ .

Hence we conclude that I =< x + y >∗.�
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