Strongly Principal Ideals of Rings with Involution

Usama A. Aburawash and Wafaa M. Fakieh

Department of Mathematics, Faculty of Science Alexandria University, Alexandria, Egypt aburawash@sci.alex.edu.eg wafaa.fakieh@hotmail.com

Abstract

The notion of strongly principal ideal groups for associative rings was introduced in [3] and its several properties were studied in [2] by using cyclic groups. Motivated by these concepts, we introduce here *-cyclic groups and strongly principal *-ideal ring groups for rings with involution and investigate their structural properties by attaching involution on their corresponding groups.

Mathematics Subject Classification: 16W10

Keywords: *-cyclic groups,*-biideals, (strongly) principal *-ideal ring groups

1. Introduction

Let P be a ring property. A group G is said to be P-group, in the sense of Feigelstock and Schlussel [3] (see also [2]), if there exists a P-ring R such that $G = R^+$. A group G is said to be nil, again in the sense of the above cited references, in case the only ring R with $G = R^+$ is the zero ring. If Gis not nil and every ring R, with $R^2 \neq 0$ and G = R is a P-ring, then G is said to be strongly P-group. By using these concepts, strongly principal ideals are thoroughly investigated. For rings with involution, we introduce here the notion of strongly principal *-ideal ring groups and study their structural properties. To achieve this goal and to make the calculations simpler we have introduced *-cyclic groups, which is generated by an element a and its involutary image a^* in the group. Moreover, we study some structural properties of *-cyclic groups as well. In particular a formula (Corollary 3.2) for computing the number of involutions for abelian groups is obtained. Their direct sum and direct summand propert ies are also outlined. We have used *-cyclic groups to obtain various properties and classifications of (strongly) principal *-ideal ring groups. In particular, it is noticed in Theorem 4.7 that there exists no mixed strongly principal *-ideal ring groups.

Throughout we assume that all groups are additive abelian and all rings are associative. If R is a ring, then its underlying additive group is denoted by $G = R^+$. If $x \in R$, then $\langle x \rangle$ (respectively (x)) means the ideal of R (respectively the subgroup of G) generated by x.

A ring R (respectively a group G) together with a unary operation * is said to be a ring (respectively, a group) with involution in case for all $a, b \in R$,

$$(a^*)^* = a, (a+b)^* = a^* + b^*, and (ab)^* = b^*a^*$$

(respectively, for all $a, b \in G$, $(a^*)^* = a$, and $(a + b)^* = a^* + b^*$). Thus the involution on R is an antiisomorphism of order two.

For commutative rings, the identity mapping is clearly an involution. Nevertheless, every group has at least one involution, namely, the unary operation of taking inverse; that is $g^* = -g$ for every $g \in G$.

Let a group G be decomposed into its subgroups as $G = H \oplus K$. If G has an involution *, then * is said to be *changeless involution* in case $g^* = (h^*, k^*)$, $\forall g = (h, k) \in H \oplus K$ (see[1]).

A group G is said to be *-cyclic if for some $a \in G$, $G = (a) + (a^*)$, which indeed one may rewrite as $G = (a)^* = (a, a^*)$. Clearly, every cyclic group is *-cyclic, but the converse is not true in general (see an example in Section 3).

A nonzero ideal I of an involution ring R (a nonzero subgroup H of an involution group G) which is closed under involution is termed as a *-ideal $(I \triangleleft^* R)$ (respectively a *-subgroup $(H \leq^* G)$); that is

$$I^* = \{a^* \in R \mid a \in I \} \subseteq I .$$

A subring A of R is said to be a *biideal* of R if $ARA \subseteq A$ and a *-*biideal* if, in addition, it is closed under the involution of R. A is called a *principal* *-*biideal* (see [7]), if

$$A = \langle a \rangle_{bi}^* = \mathbb{Z}a + \mathbb{Z}a^* + aRa + a^*Ra + aRa^* + a^*Ra^*.$$

On the same ground a *principal* *-*ideal* is defined. A *principal* *-*ideal* I is a *-ideal generated by a single element. This means that, for some $a \in R$, one may write:

$$I = \langle a \rangle^* = \mathbb{Z}a + \mathbb{Z}a^* + aR + Ra + RaR + a^*R + Ra^* + Ra^*R$$

Thus, it can easily be deduced that

$$I = \langle a \rangle + \langle a^* \rangle = \langle a, a^* \rangle.$$

A ring with involution * is said to be *principal *-ideal ring* if each *-ideal is a principal *-ideal.

A group G is called strongly principal *-ideal ring group, if G is not nil and every ring R with involution satisfying $R^2 \neq 0$ and $G = R^+$, is a principal *-ideal ring.

Let $f : A \longrightarrow B$ be a group or a ring homomorphism. If A and B are equipped with some involutions $*_A$ and $*_B$ such that $f(a^{*_A}) = [f(a)]^{*_B}$, then we say that f is an *involution preserved homomorphism*. If f is an *involution* preserved isomorphism, then we will write $A \stackrel{*}{\cong} B$. It is clear that *-subgroups and *-ideals are preserved under such isomorphisms. Moreover, if $A \cong B$, as a group or a ring, then every involution on A induced an involution on B.

In sections 2 and 3, we give some elementary properties for *-cyclic groups. Furthermore ,in section 4,(strongly) principal *-ideal ring groups are widely studied.

2. Some Elementary Properties

Lemma 2.1. Let G be a group with involution *. Then the following subgroups of G are closed under the involution *.

(a) $nG, \forall n \in \mathbb{Z}$.

(b) The torsion subgroup G_t of G.

(c) For any prime p, every p-primary subgroup G_p of G.

(d) The maximal divisible subgroup of G.

(e) The subgroup $G[m] = \{g \in G \mid mg = 0\}$ of G, for some integer m.

Proof: (a) Let $x \in nG$. Then x = ng for some $g \in G$, hence $x^* = ng^*$ and $g^* \in G$. So $x^* \in nG$ and nG is closed under involution.

(b) Let $x \in G_t$. Then there exists a positive integer n such that nx = 0. Hence $nx^* = 0$ and $x^* \in G$ follows.

(c) Let $x \in G_p$. Then $|x| = p^n$ for some positive integer n and $p^n x = 0$, implies $p^n x^* = 0$. Hence $x^* \in G_p$.

(d) Let D be the maximal divisible subgroup of G. If $x \in D$, then there exists $y \in D$ such that x = ny for any positive integer n ,whence $x^* = ny^*$. Since D is the maximal divisible subgroup, $x^*, y^* \in D$, therefore D is closed under involution.

(e) Let $x \in G[m]$, then mx = 0, whence $mx^* = 0$ and $x^* \in G[m]$ follows.

Corollary 2.2. In every involution ring R, nR, R[n], R_t , R_p and the maximal divisible ideal D are *-ideals.

Proof : It is clear that $G = R^+$ has involution; the same involution of R. So from Lemma 2.1, nR, R[n], R_t , R_p and the maximal divisible subgroup D are *-subgroups of G. Since nR, R[n], R_t , R_p , and D are ideals in R (see [5]), hence nR, R[n], R_t , R_p and D are *-ideals in every involution ring R.

Lemma 2.3. (a) Every direct sum of involution groups is an involution group.

(b) Every direct summand of a group with a changeless involution is an involution group.

(c) If a direct summand of a group has an involution, then the group has an involution.

Proof : (a) Let $G = H \oplus K$, where H and K are groups with involutions $*_H$ and $*_K$, respectively. Then for every $g = (h, k) \in G$, where $h \in H$ and $k \in K$, define the involution $*_G$ on G by

$$g^{*_G} = (h^{*_H}, k^{*_K}).$$

Because of the unique representation of each element, $*_G$ becomes a unary operation on G. Further,

$$(g^{*_G})^{*_G} = ((h^{*_H})^{*_H}, (k^{*_K})^{*_K})) = (h, k) = g.$$

Assume that $g_i \in G$, with $g_i = (h_i, k_i)$, where $h_i \in H$ and $k_i \in K$. Then

$$(g_1 + g_2)^{*_G} = ((h_1 + h_2)^{*_H}, (k_1 + k_2)^{*_K}) = ((h_1^{*_H} + h_2^{*_H}), (k_1^{*_K} + k_2^{*_K}))$$

= $(h_1^{*_H}, k_1^{*_K}) + (h_2^{*_H}, k_2^{*_K}) = g_1^{*_G} + g_2^{*_G}.$

Hence $*_G$ is an involution on G; it is in fact the changeless involution on G.

The proof can analogously be extended to finite as well as to arbitrary direct sums.

(b) Let $G = H \oplus K$. Set $H' = H \oplus 0$ and $K' = 0 \oplus K$. Clearly, H' and K' are direct summands and subgroups of G. Assume that * is the changeless involution on G. Then $* \mid_{H'}$ (involution on G restricted to H') is an involution on H' and $* \mid_{K'}$ is an involution on K'. Also, $H \cong H'$ and $K \cong K'$. Hence (b) is proved.

(c) Let $G = H \oplus K$ and H be a group with an involution $*_H$. Then for every $g = (h, k) \in G$, where $h \in H$ and $k \in K$, define an operation $*_G$ on Gby

$$g^{*_G} = (h^{*_H}, k).$$

Clearly, $*_G$ is the changeless involution on $G.\blacksquare$

Parts (a) and (b) of Lemma 2.3 can easily be extended to rings, subrings and ideals. But for part (c) we need the following modification.

Corollary 2.4. Let $R = A \oplus B$, where A and B are rings in which B is commutative. Then R has a (changeless) involution if and only if G has an involution.

Proof : One way is clear from Lemma 2.3-(b). Assume that A has an involution $*_A$. Define $*_R$ on R by

$$r^{*_R} = (a^{*_A}, b)$$

Then, $*_R$ is a unary operation on R and for $r_1 = (a_1, b_1), r_2 = (a_2, b_2) \in R$,

$$(r_1r_2)^{*_R} = ((a_1a_2)^{*_A}, b_1b_2) = ((a_2^{*_A}a_1^{*_A}), b_2b_1) = r_2^{*_R}r_1^{*_R}$$

The rest is as in Lemma 2.3-(c). \blacksquare

3. Cyclic Groups with Involution

Let G be an infinite cyclic group. Following [8], there are two involutions on G, the identity involution and the involution $a^* = -a$; of taking inverse. If G is a finite cyclic group of order n, then Aut(G) consists of all automorphisms, $\alpha_k : a \to ka$, where $1 \le k \le n$ and (k, n) = 1. Moreover,

$$Aut(G) \cong U(\mathbb{Z}_n)$$

(the multiplicative group of units of the ring \mathbb{Z}_n). Since

$$\alpha_{n-1}: a \to (n-1) a$$

is the only automorphism of order 2, Aut(G) has only two automorphisms of order two; the identity mapping and α_{n-1} (of taking inverse), so G has only two involutions.

From this introduction, we note that every cyclic group has two involutions; namely the identity mapping and the mapping of taking inverse. Moreover, every subgroup of a cyclic group is closed under these involutions.

Proposition 3.1. Let G be an additive abelian group, $G = H \oplus K$, and let H and K be cyclic subgroups of G. If $(|H|, |K|) \neq 1$, then

(a) G has exactly four involutions, namely:

$$g^* = (h, k), g^* = (-h, k), g^* = (h, -k), g^* = (-h, -k) \text{ and } g^* = (h, k).$$

(b) Every subgroup of G is closed under involution.

Proof : (a) By Lemma 2.3, H and K are *-subgroups. Since H and K are cyclic, H and K,each, has two involutions; the identity involution and $*: a \rightarrow -a$. Hence again by Lemma 2.3, G has exactly the given four involutions.

(b) By Theorem 8.1 in [4], any subgroup H of G is a direct sum of two cyclic subgroups, or it is cyclic. Hence by (a), H is a *-subgroup.

The following immediate result gives the number of involutions of abelian groups.

Corollary 3.2. Let G be an additive abelian group. If $G = \bigoplus_{i=1}^{n} H_i$, where each H_i is a cyclic subgroup of G such that $(|H_i|, |H_j|) \neq 1, 1 \leq i, j \leq n$, then G has 2^n involutions.

Proposition 3.3. Let R be a ring with involution such that $R^+ = G$. Then R has only the identity involution in case any one of the following holds:

(1) G is a cyclic group.

(2) G is a direct sum of cyclic subgroups.

Proof : (1) Let G be cyclic. Since R is an involution ring, G has either the identity involution or the involution $*: a \to -a$. However, $-(ab) \neq (-b)(-a)$, for all $a, b \in R$. Hence R has the identity involution only.

(2) If $G = H \oplus K$, and H and K are cyclic subgroups of G, then by Proposition 3.1, G has four involutions. But then again by (1), G has only one involution.

Definition 3.4. By a *-cyclic group H, we mean a *-group generated by one element.

This means that,

$$H = (a)^* = (a, a^*) = (a) + (a^*).$$

Let G be a cyclic group, then $G = (a) = (a^*)$ and $G = (a) + (a^*)$, so G is a *-cyclic group. The converse of this fact is not always true.

For example in the group

$$(M_{2\times 2}(\mathbb{Z}_3), +)$$

with the transposed involution, let $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, whence $a^* = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Obviously, the *-cyclic group $H = (a) + (a^*)$ is not a cyclic group. **Proposition 3.5.** Let $G = H \oplus K$. If H and K are *-cyclic groups such that $H = (a)^*$, $K = (b)^*$, (|a|, |b|) = 1. Then G is *-cyclic.

Proof : The given condition

$$(|a|, |b|) = 1$$

implies that $(a) \oplus (b)$ is a cyclic group generated by (a, b) and $(a^*) \oplus (b^*)$ is a cyclic group generated by (a^*, b^*) . But,

$$G = H \oplus K = (a) + (a^*) \oplus (b) + (b^*) = (a) \oplus (b) + (a^*) \oplus (b^*).$$

Hence G is *-cyclic with $G = ((a, b))^*$.

Proposition 3.6. If G is a *-cyclic group, then any *-subgroup of G is a *-cyclic subgroup.

Proof : A *-cyclic group is either torsion or torsion free. First assume that G is torsion free and let

$$G = (a)^* = (a, a^*).$$

If

$$(a) \cap (a^*) \neq 0,$$

then $na^* = ma \neq 0$, for some integers m and n. This implies $na = ma^*$. So, $na - na^* = ma^* - ma$, from which $n(a - a^*) = m(a^* - a) = -m(a - a^*)$ and so $(n + m)(a - a^*) = 0$. Since G is torsion free, $a - a^* = 0$ implies $a = a^*$, whence $(a) \cap (a^*) = 0$ and $G = (a) \oplus (a^*)$.

Secondly assume that G is torsion, $G = (a) + (a^*)$, and $|a| = |a^*| = k$.Let $g \in G$, $g = ma + na^*$, for some integers m, n. Since $k(ma + na^*) = 0$, it follows that $|g| \leq k$, and a, a^* have maximal orders. Hence $G = (a) \oplus (a^*)$, from [6], page 81. Thus in both cases, $G = (a) \oplus (a^*)$.

If $H \leq^* G$, then $H = (b) \oplus (c)$, where $(b) \leq (a)$ and $(c) \leq (a^*)$. Then (b) = (ma) and $(c) = (na^*)$, whence

$$H = (ma) \oplus (na^*).$$

Since H is *-subgroup, $ma^* + na \in H$. But $ma^* \in (na^*)$, so m > n and $na \in (ma)$, so n > m. Therefore n = m and

$$H = (na) \oplus (na^*).$$

Hence $H = (na)^*$ and H is a *-cyclic subgroup of G.

Proposition 3.7. Let x_1 and x_2 be elements of a group G such that a prime $p||x_1|, |x_2|$. If $G = (x_1)^* \oplus (x_2)^*$, then there exist $y_1, y_2 \in G$ such that $(y_1)^* \leq (x_1)^*$ and $(y_2)^* \leq (x_2)^*$.

Proof : Let

$$G = (x_1) + (x_1^*) \oplus (x_2) + (x_2^*).$$

If p is a prime such that $p \mid |x_1|$, then there exists $y_1 \in (x_1)$ such that, $p \mid |y_1|$ and $|y_1|$ divides $|x_1|$. Consequently,

$$(y_1) \le (x_1)$$
 and $(y_1^*) \le (x_1^*)$.

Similarly there is $y_2 \in (x_2)$ such that

$$(y_2) \le (x_2)$$
 and $(y_2^*) \le (x_2^*)$.

Hence, it is concluded that

$$(y_1) + (y_1^*) \le (x_1) + (x_1^*)$$

and

$$(y_2) + (y_2^*) \le (x_2) + (x_2^*),$$

that is, $(y_1)^* \le (x_1)^*$ and $(y_2)^* \le (x_2)^*$.

4. Strongly principal *-Ideal Ring Groups.

As it is mentioned before that the notion of strongly principal ideal groups for associative rings was introduced and investigated thoroughly in [2] and [3]. Motivated by these concepts, we introduce here strongly principal *-ideal ring groups for rings with involution and study their structural properties by attaching involution on their corresponding ground groups.

Definitions 4.1. Let R be a ring with involution. For some $a \in R$, one may write:

$$I = \langle a \rangle^* = \mathbb{Z}a + \mathbb{Z}a^* + aR + Ra + RaR + a^*R + Ra^* + Ra^*R.$$

Clearly I is an ideal of R closed under involution and is called the principal *-ideal generated by a.

One may deduce that

$$I = \langle a \rangle + \langle a^* \rangle = \langle a, a^* \rangle.$$

A ring with ivolution * is a principal *-ideal ring if each *-ideal is a principal *-ideal. Moreover, we say that a group G is strongly principal *-ideal ring group, if G is not nil, and every ring R with involution satisfying $R^2 \neq 0$, and $G = R^+$, is a principal *-ideal ring.

Lemma 4.2. Let $G = H \oplus K$, $H \neq 0$, $K \neq 0$, be a strongly principal *-ideal ring group. Then H and K are either both *-cyclic or both nil.

Proof : Suppose that H is not nil. Let S be a *-ring with $S^+ = H$ and $S^2 \neq 0$ and let T be the zero ring on K. By Corollary 2.5, the ring direct sum $R = S \oplus T$ is a ring with involution satisfying $R^+ = G$ and $R^2 \neq 0$. Since T is a *-ideal in $R, T = \langle x \rangle^*$. Clearly $K = T^+ = (x)^*$. Therefore K is not nil. Interchanging the roles of H and K yields that H is *-cyclic.

Corollary 4.3. Let $G = H \oplus K$, $H \neq 0$, $K \neq 0$, be a strongly principal *-ideal ring group. Then H and K are *-cyclic.

Proof : It suffices to negate that H and K are both nil. Let $R = (G, \cdot)$ be a ring with involution satisfying $R^2 \neq 0$.

1) Suppose that $R^2 \subseteq K$. There exist $h_0 \in H$, $k_0 \in K$, such that $R = \langle h_0 + k_0 \rangle^*$.

Let $h \in H$, since $h \in R$, there exist integers n and m, and $x \in R^2$ such that

$$h = n(h_0 + k_0) + m(h_0 + k_0)^* + x.$$

However, $x \in K$, so

$$h = nh_0 + mh_0^*$$

and H is *-cyclic, contradicting the fact that H is nil.

2) Suppose that $R^2 \nsubseteq K$. For all $g_1, g_2 \in G$, define $g_1 \circ g_2 = \pi_H(g_1 \cdot g_2)$, where π_H is the natural projection of G onto H. Since

$$(g_1 \circ g_2)^* = (\pi_H(g_1 \cdot g_2))^* = \pi_H(g_1 \cdot g_2)^* = \pi_H(g_2^* \cdot g_1^*) = g_2^* \circ g_1^*,$$

hence $S = (G, \circ)$ is a ring with involution satisfying $S^2 \subseteq H$. The argument employed in (1) yields that K is *-cyclic which contradicts the fact that K is nil.

Theorem 4.4. Let $G \neq 0$ be a torsion group. If G is cyclic or $G \cong (x_1) \oplus (x_2)$, where $x_1 \neq x_2$, $|x_1| = |x_2| = p$ is a prime, then G is strongly principal *-ideal ring group.

Proof : Assume that either G is cyclic or as given in the hypothesis. Then by Proposition. 3.3, any ring R with $R^+ = G$ has only the identity involution. By [2, Theorem 4.2.3], G is strongly principal *-ideal ring group. **Theorem 4.5.** Let G be a torsion strongly principal *-ideal ring group. Then G is *-cyclic group or $G = (x_1)^* \oplus (x_2)^*$, with $|x_i| = p$, a prime, where i = 1, 2.

Proof : Suppose that G is a strongly principal *-ideal ring group. Let G be indecomposable. Then by [2, Corollary 1.1.5], $G \cong \mathbb{Z}_{p^n}$, p a prime, $1 \le n \le \infty$. If $n = \infty$, then G is divisible by [2, Proposition.1.1.3] and so G is nil, by [2, Theorem 2.1.1], which is a contradiction. Hence G is cyclic and so *-cyclic.

Next, suppose that $G = H \oplus K$, $H \neq 0, K \neq 0$, by Lemma 4.2, either H and K are both *-cyclic or both nil. If H and K are nil, then they are both divisible, so G is nil, by [2, Theorem 2.1.1] which is again a contradiction. Therefore $G = (x_1)^* \oplus (x_2)^*$, with $|x_i| = n_i$, i = 1, 2. If $(n_1, n_2) = 1$, then G is *-cyclic, by Proposition. 3.5. Otherwise, let p be a prime divisor of (n_1, n_2) . Then by Proposition. 3.7,

$$G = (y_1)^* \oplus (y_2)^* \oplus H$$

with

$$|y_i| = p^{m_i}, i = 1, 2, and \ 1 \le m_1 \le m_2.$$

Since $(y_1)^* \oplus (y_2)^*$ is neither * cyclic nor nil, H = 0 by Lemma 4.2. The products

$$y_i \cdot y_j = p^{m_2 - -1} y_2, y_i \cdot y_j^* = 0$$
 where $i, j = 1, 2, ..., y_j = 0$

induce a *-ring structure R on G with $R^2 \neq 0$. Therefore, $R = \langle s_1 y_1 + s_2 y_2 \rangle^*$, s_1 and s_2 are integers. Every element $x \in R$ has the form:

$$x = k_x s_1 y_1 + (k_x s_2 + m_x p^{m_2 - 1}) y_2 + k'_x s_1 y_1^* + (k'_x s_2 + m'_x p^{m_2 - 1}) y_2^*$$

where k_x , m_x , k'_x , and m'_x are integers. In particular,

$$y_1 = k_{y_1}s_1y_1$$
, and $y_2 = (k_{y_2}s_2 + m_{y_2}p^{m_2-1})y_2$.

Hence if $m_2 > 1$, then

$$k_{y_1}s_1 \equiv 1 \pmod{p}$$
, and $k_{y_2}s_2 + m_{y_2}p^{m_2-1} \equiv 1 \pmod{p}$,

which imply that $p \nmid k_{y_1}$ and $p \nmid s_2$. However

$$k_{y_1}s_2 + m_{y_1}p^{m_2-1} \equiv 0 \pmod{p}$$

So either $p|k_{y_1}$ or $p|s_2$ which is a contradiction. Therefore $m_1 = m_2 = 1$.

Theorem 4.6. Let G be a torsion group which is either *- cyclic or $G \cong (x_1)^* \oplus (x_2)^*$ with $|x_i| = p$, a prime, where i = 1, 2. Then for any *-ring R with $R^+ = G$, R is a principal *-ideal ring.

Proof : By Proposition. 3.6, non trivial *-cyclic groups are clearly principal *-ideal ring groups. Let

$$G = (x_1)^* \oplus (x_2)^*$$

with

$$|x_i| = p, i = 1, 2$$

and let R be a *-ring with $R^+ = G$ and $R^2 \neq 0$. If I is a proper *-ideal in R, then |I| = 1, p, or p^2 , and so I is a *- ideal generated by one element, we may assume that $R \neq \langle x_i \rangle^*$, i = 1, 2. Hence

$$\langle x_i \rangle^{*+} = (x_j)^*$$

for i = 1, 2. This implies the following three relations:

$$x_i x_j = k_i x_i, \ 0 \le k_i < p, \text{ if } i = j, \ i = 1, 2, \text{ either } k_1 \ne 0 \text{ or } k_2 \ne 0,$$

$$x_i x_j = 0$$
, if $i \neq j$, $i, j = 1, 2$,

and

$$x_i^* x_j = 0$$
, for all $i, j = 1, 2$.

Put

$$I = \left\langle x_1 + x_2 \right\rangle^*.$$

Suppose that $k_1 \neq 0$. Let r, s be integers such that $rk_1 + sp = 1$. Then

$$rx_1(x_1 + x_2) = rk_1x_1 = (1 - sp)x_1 = x_1$$

and

$$r(x_1 + x_2)^* x_1^* = rk_1 x_1^* = (1 - sp)x_1^* = x_1^*.$$

Hence $x_1 \in I$ and $x_1^* \in I$, so

$$(x_1 + x_2) - x_1 = x_2 \in I$$

and

$$(x_1 + x_2)^* - x_1^* = x_2^* \in I.$$

Therefore I = R. If $k_2 \neq 0$, then the above argument, reversing the roles of the indices 1, 2 again yields I = R.

Theorem 4.7. There are no mixed strongly principal *-ideal ring groups.

Proof : Let G be a mixed strongly principal *-ideal ring group. G is decomposable by [2, Corollary.1.1.5], so by Lemma 4.2, $G = H \oplus K$, $H \neq 0, K \neq 0$, with H and K both *-cyclic, or both nil.

1) Suppose that H and K are both nil. There are no mixed nil groups by [2, Theorem 2.1.1]. So, we may assume that H is a torsion group, and that K is torsion free. Let R be a *-ring with $R^+ = G$ and $R^2 \neq 0$. Clearly H is a *-ideal in R and so $H = \langle h \rangle^*$. Let |h| = m, then mH = 0. By [2, Theorem 2.1.1], H is divisible, and therefore not bounded, a contradiction.

2) Suppose that $H = (x)^*$ and $K = (e)^*$ with |x| = n, and $|e| = \infty$. The products

$$x^{2} = xe = ex = e^{*}x = ex^{*} = xe^{*} = x^{*}e = 0$$
 and $e^{2} = ne$

induce a *-ring structure R on G satisfying $R^2 \neq 0$. Therefore there exist integers s and t such that $R = \langle sx + te \rangle^*$. Every $y \in R$ is of the form

$$y = m_y sx + (m_y + u_y n)te + m'_y sx^* + (m'_y + u'_y n)te^*,$$

with m_y , m'_y , u_y and u'_y integers. In particular, $(m_e + u_e n)t = 1$. Hence $t = \pm 1$. Therefore, $m_x + u_x n = 0$ and so $n|m_x$. However, $x = m_x s x = 0$, is a contradiction.

Theorem 4.8. Let G be a torsion free strongly principal *-ideal ring group. Then G is either indecomposable, or is the direct sum of two nil groups.

Proof : By Lemma 4.2. it suffices to negate that

$$G = (x_1)^* \oplus (x_2)^*, \ x_i \neq 0, \ i = 1, 2.$$

Suppose this is so, the products:

$$x_i x_j = 3x_i$$
 and $x_i^* x_j = 0$ for $i = j = 1, 2,$

$$x_i x_j = x_i^* x_j = 0$$
, for $i \neq j$

induce a ring structure R on G with involution * satisfying $R^2 \neq 0$. Therefore there exist nonzero integers k_1, k_2 such that

$$R = \left\langle k_1 x_1 + k_2 x_2 \right\rangle^*.$$

Every $x \in R$ is of the form:

$$x = (r_x + 3s_x)k_1x_1 + (r_x + 3t_x)k_2x_2 + (r'_x + 3s'_x)k_1x_1^* + (r'_x + 3t'_x)k_2x_2^*$$

where r_x , r'_x , s_x , s'_x , t_x , t'_x are integers. From

$$r_{x_1} + 3s_{x_1} = \pm 1,$$

it follows that

$$r_{x_1} \equiv \pm 1 (mod \ 3).$$

However,

 $r_{x_1} + 3t_{x_1} = 0$

implies

$$r_{x_1} \equiv 0 \pmod{3}$$

which is a contradiction.

Lemma 4.9. Let G and H be torsion free groups with $G \cong H$. Then G is a strongly principal *-ideal ring group if and only if H is.

Proof : Let $f : H \longrightarrow G$ be a *-isomorphism such that G is a strongly principal *-ideal ring group. Let $R = (H, \cdot)$ be a ring with involution * such that $R^2 \neq 0$. The product

$$g_1 \circ g_2 = f(h_1 \cdot h_2),$$

where, $g_1 = f(h_1)$ and $g_2 = f(h_2)$, for all $g_1, g_2 \in G$, induces a ring structure $S = (G, \circ)$ with $S^2 \neq 0$. Then G is a group with involution ∇ . Since

$$(g_1 \circ g_2)^{\nabla} = [f(h_1 \cdot h_2)]^{\nabla} = f(h_1 \cdot h_2)^* = f(h_2^* \cdot h_1^*) = g_2^{\nabla} \circ g_1^{\nabla}.$$

Hence S has an involution. Let $I \triangleleft^* R$, then $f(I) \triangleleft^{\nabla} S$ and there exists $g \in G$ such that $f(I) = \langle g \rangle^{\nabla}$, with g = f(h), $h \in H$. We claim that $I = \langle h \rangle^*$. Clearly $\langle h \rangle^* \subseteq I$. Let $x \in I$, then $f(x) \in \langle g \rangle^{\nabla}$ and so

$$f(x) = ng^{\nabla} + mg + g \circ y_1 + g^{\nabla} \circ y_2 + z_1 \circ g + z_2 \circ g^{\nabla}$$

where m, n are integers and $y_1 = f(\dot{h_1}), y_2 = f(\dot{h_2}), z_1 = f(\dot{h_1})$ and $z_2 = f(\dot{h_2}) \in G$. Thus

$$f(x) = nf(h^*) + mf(h) + f(h \cdot \dot{h_1}) + f(h^* \cdot \dot{h_2}) + f(\dot{h_1} \cdot h) + f(\dot{h_2} \cdot h^*)$$

= $f(nh^* + mh + h \cdot \dot{h_1} + h^* \cdot \dot{h_2} + \dot{h_1} \cdot h + \dot{h_2} \cdot h^*)$

which concludes that $x \in \langle h \rangle^*$. Hence $I = \langle h \rangle^*$.

Theorem 4.10: Let G be a torsion group. Then the following are equivalent:

(1) G is bounded

(2) G is a principal *-ideal ring group.

Proof: (1) \Rightarrow (2): Suppose that nG = 0 and n is a positive integer. Then

$$G = \bigoplus_{p|n} \left[\bigoplus_{\alpha_k} \mathbb{Z}_{p^k} \right]$$

where p is a prime with $p^k \mid n$ and α_k a cardinal number ,by [2, Proposition 1.1.9]. For each $p^k \mid n$, put

$$H_{p^k} = \bigoplus_{\alpha_k} \mathbb{Z}_{p^k}.$$

Then

$$G = \bigoplus_{p^k \mid n} H_{p^k},$$

and there exists a commutative principal ideal ring R_{p^k} with unity and

$$R_{P^k}^+ = H_{p^k}$$

for all $p^k \mid n$, by [5, Lemma 122.3]. The ring direct sum

$$R = \bigoplus_{p^k \mid n} R_{p^k}$$

is a principal *-ideal ring with the identity involution satisfying $R^+ = G$ and $R^2 \neq 0$.

(2) \Rightarrow (1): Let R be a principal *-ideal ring with $R^+ = G$. Then $R = \langle x \rangle^*$ and n = |x|. So nG = 0.

Theorem 4.11: Let G be a mixed group. Then

(1) If G is a principal *-ideal ring group, then G_t is bounded and G/G_t is a principal *-ideal ring group.

(2) Conversely, if G_t is bounded and if there exists a unital principal *-ideal ring with additive group G/G_t , then G is a principal *- ideal ring group.

Proof : (1) Let R be a principal *-ideal ring with $R^+ = G$. Since G_t is a *-ideal in R, $G_t = \langle x \rangle^*$ and $nG_t = 0$, n = |x|. Now $G = G_t \oplus H$ and $H \cong G/G_t$ by [2, Proposition. 1.1.2]. Now

$$R = \langle a + y \rangle^*, a \in G_t, 0 \neq y \in H.$$

Suppose that $R^2 \subseteq G_t$ and let $h \in H$. Then there exist integers k_n , k'_n such that,

$$h = k_n y + k'_n y^* + b,$$

with $b \in \mathbb{R}^2$. Since $\mathbb{R}^2 \subseteq G_t$, b = 0, and

$$h = k_n y + k'_n y^*.$$

Therefore $H = (y)^*$. By Proposition 3.6, H is a principal *- ideal ring group. If $R^2 \notin G_t$, then $\bar{R} = R/G_t$ is a principal *-ideal ring with $\bar{R}^+ \cong G/G_t$, and $\bar{R}^2 \neq 0$.

(2) Conversely, suppose that G_t is bounded, and that there exists a unital principal *-ideal ring T with $T^+ = G/G_t$. Hence

$$G \cong G_t \oplus G/G_t,$$

by [2, Proposition. 1.1.2]. There exists a principal *-ideal ring S with unity and * is the identity involution such that $S^+ = G_t$, from [5, Lemma 122.3]. Let

$$R = S \oplus T$$

with e, f the unities of S and T, respectively. Then R is a ring with involution *, by Corollary 2.5. Let I be a *-ideal in R, then

$$I = (I \cap S) \oplus (I \cap T).$$

Now, $I \cap S \triangleleft^* S$ and so

 $I \cap S = \langle x \rangle^* \,.$

Similarly

$$I \cap T = \langle y \rangle^* .$$

Clearly,

$$\langle x+y\rangle^* \subseteq I.$$

However,

$$x = e(x+y) \in \langle x+y \rangle^*, \ x^* = e(x+y)^* \in \langle x+y \rangle^*$$

and

$$y = f(x+y) \in \langle x+y \rangle^*, \ y^* = f(x+y)^* \in \langle x+y \rangle^*.$$

Hence we conclude that $I = \langle x + y \rangle^*$.

References

[1] U.A. Aburawash, On involution rings, *East-West J.Math*, Vol. 2, No. 2, (2000), 102-126.

[2] S. Feigelstock, Additive Groups of Rings, Pitman (APP), 1983.

[3] S. Feigelstock, Z. Schlussel, Principal ideal and noetherian groups, *Pac. J. Math*, 75 (1978), 85-87.

[4] L. Fuchs, *Infinite Abelian Groups, Vol. I*, Academic Press, New York, 1970.

[5] L. Fuchs, *Infinite Abelian Groups, Vol. II*, Academic Press, New York, 1973.

[6] T.W. Hungerford, Algebra, Springer Science+Business Media, 1974.

[7] N.V. Loi, On the structure of semiprime involution rings, *Contr. to General Algebra, Proc. Krems Cons., North-Holland* (1990), 153-161.

[8] D.J.S. Robinson, A Course in the Theory of Groups, Springer, New York, 1991.

Received: December 25, 2007