Strongly Principal Ideals of Rings
 with Involution

Usama A. Aburawash and Wafaa M. Fakieh
Department of Mathematics, Faculty of Science
Alexandria University, Alexandria, Egypt
aburawash@sci.alex.edu.eg
wafaa.fakieh@hotmail.com

Abstract

The notion of strongly principal ideal groups for associative rings was introduced in [3] and its several properties were studied in [2] by using cyclic groups. Motivated by these concepts, we introduce here *-cyclic groups and strongly principal *-ideal ring groups for rings with involution and investigate their structural properties by attaching involution on their corresponding ground groups.

Mathematics Subject Classification: 16W10
Keywords: *-cyclic groups,*-biideals, (strongly) principal *-ideal ring groups

1. Introduction

Let P be a ring property. A group G is said to be P-group, in the sense of Feigelstock and Schlussel [3] (see also [2]), if there exists a P-ring R such that $G=R^{+}$. A group G is said to be nil, again in the sense of the above cited references, in case the only ring R with $G=R^{+}$is the zero ring. If G is not nil and every ring R, with $R^{2} \neq 0$ and $G=R$ is a P-ring, then G is said to be strongly P-group. By using these concepts, strongly principal ideals are thoroughly investigated. For rings with involution, we introduce here the notion of strongly principal *-ideal ring groups and study their structural properties. To achieve this goal and to make the calculations simpler we have introduced ${ }^{*}$-cyclic groups, which is generated by an element a and its involutary image a^{*} in the group. Moreover, we study some structural properties of *-cyclic groups as well. In particular a formula (Corollary 3.2) for computing
the number of involutions for abelian groups is obtained. Their direct sum and direct summand propert ies are also outlined. We have used *-cyclic groups to obtain various properties and classifications of (strongly) principal *-ideal ring groups. In particular, it is noticed in Theorem 4.7 that there exists no mixed strongly principal *-ideal ring groups.

Throughout we assume that all groups are additive abelian and all rings are associative. If R is a ring, then its underlying additive group is denoted by $G=R^{+}$. If $x \in R$, then $\langle x\rangle$ (respectively (x)) means the ideal of R (respectively the subgroup of G) generated by x.

A ring R (respectively a group G) together with a unary operation $*$ is said to be a ring (respectively, a group) with involution in case for all $a, b \in R$,

$$
\left(a^{*}\right)^{*}=a, \quad(a+b)^{*}=a^{*}+b^{*}, \quad \text { and }(a b)^{*}=b^{*} a^{*}
$$

(respectively, for all $a, b \in G,\left(a^{*}\right)^{*}=a$, and $\left.(a+b)^{*}=a^{*}+b^{*}\right)$.Thus the involution on R is an antiisomorphism of order two.

For commutative rings, the identity mapping is clearly an involution. Nevertheless, every group has at least one involution, namely, the unary operation of taking inverse; that is $g^{*}=-g$ for every $g \in G$.

Let a group G be decomposed into its subgroups as $G=H \oplus K$. If G has an involution $*$, then $*$ is said to be changeless involution in case $g^{*}=\left(h^{*}, k^{*}\right)$, $\forall g=(h, k) \in H \oplus K($ see $[1])$.

A group G is said to be ${ }^{*}$-cyclic if for some $a \in G, G=(a)+\left(a^{*}\right)$, which indeed one may rewrite as $G=(a)^{*}=\left(a, a^{*}\right)$. Clearly, every cyclic group is *-cyclic, but the converse is not true in general (see an example in Section 3).

A nonzero ideal I of an involution ring R (a nonzero subgroup H of an involution group G) which is closed under involution is termed as a ${ }^{*}$-ideal $\left(I \triangleleft^{*} R\right)\left(\right.$ respectively a^{*}-subgroup $\left(H \leq^{*} G\right)$); that is

$$
I^{*}=\left\{a^{*} \in R \mid a \in I\right\} \subseteq I .
$$

A subring A of R is said to be a biideal of R if $A R A \subseteq A$ and a ${ }^{*}$-biideal if, in addition, it is closed under the involution of R. A is called a principal *-biideal (see [7]), if

$$
A=\langle a\rangle_{b i}^{*}=\mathbb{Z} a+\mathbb{Z} a^{*}+a R a+a^{*} R a+a R a^{*}+a^{*} R a^{*} .
$$

On the same ground a principal *-ideal is defined. A principal ${ }^{*}$-ideal I is a *-ideal generated by a single element. This means that, for some $a \in R$, one may write:

$$
I=\langle a\rangle^{*}=\mathbb{Z} a+\mathbb{Z} a^{*}+a R+R a+R a R+a^{*} R+R a^{*}+R a^{*} R .
$$

Thus, it can easily be deduced that

$$
I=\langle a\rangle+\left\langle a^{*}\right\rangle=\left\langle a, a^{*}\right\rangle .
$$

A ring with involution $*$ is said to be principal ${ }^{*}$-ideal ring if each ${ }^{*}$-ideal is a principal *-ideal.

A group G is called strongly principal ${ }^{*}$-ideal ring group, if G is not nil and every ring R with involution satisfying $R^{2} \neq 0$ and $G=R^{+}$, is a principal *-ideal ring.

Let $f: A \longrightarrow B$ be a group or a ring homomorphism. If A and B are equipped with some involutions $*_{A}$ and $*_{B}$ such that $f\left(a^{*_{A}}\right)=[f(a)]^{*_{B}}$, then we say that f is an involution preserved homomorphism. If f is an involution preserved isomorphism, then we will write $A \stackrel{*}{\cong} B$. It is clear that ${ }^{*}$-subgroups and ${ }^{*}$-ideals are preserved under such isomorphisms. Moreover, if $A \cong B$, as a group or a ring, then every involution on A induced an involution on B.

In sections 2 and 3,we give some elementary properties for ${ }^{*}$-cyclic groups. Furthermore ,in section 4,(strongly) principal *-ideal ring groups are widely studied.

2. Some Elementary Properties

Lemma 2.1. Let G be a group with involution *. Then the following subgroups of G are closed under the involution *.
(a) $n G, \forall n \in \mathbb{Z}$.
(b) The torsion subgroup G_{t} of G.
(c) For any prime p, every p-primary subgroup G_{p} of G.
(d) The maximal divisible subgroup of G.
(e) The subgroup $G[m]=\{g \in G \mid m g=0\}$ of G, for some integer m.

Proof : (a) Let $x \in n G$. Then $x=n g$ for some $g \in G$, hence $x^{*}=n g^{*}$ and $g^{*} \in G$. So $x^{*} \in n G$ and $n G$ is closed under involution.
(b) Let $x \in G_{t}$. Then there exists a positive integer n such that $n x=0$. Hence $n x^{*}=0$ and $x^{*} \in G$ follows..
(c) Let $x \in G_{p}$. Then $|x|=p^{n}$ for some positive integer n and $p^{n} x=0$, implies $p^{n} x^{*}=0$. Hence $x^{*} \in G_{p}$.
(d) Let D be the maximal divisible subgroup of G. If $x \in D$, then there exists $y \in D$ such that $x=n y$ for any positive integer n, whence $x^{*}=n y^{*}$. Since D is the maximal divisible subgroup, $x^{*}, y^{*} \in D$, therefore D is closed under involution.
(e) Let $x \in G[m]$, then $m x=0$, whence $m x^{*}=0$ and $x^{*} \in G[m]$ follows

Corollary 2.2. In every involution ring $R, n R, R[n], R_{t}, R_{p}$ and the maximal divisible ideal D are *-ideals.

Proof: It is clear that $G=R^{+}$has involution; the same involution of R. So from Lemma 2.1, $n R, R[n], R_{t}, R_{p}$ and the maximal divisible subgroup D are *-subgroups of G. Since $n R, R[n], R_{t}, R_{p}$, and D are ideals in R (see [5]), hence $n R, R[n], R_{t}, R_{p}$ and D are *-ideals in every involution ring R.

Lemma 2.3. (a) Every direct sum of involution groups is an involution group.
(b) Every direct summand of a group with a changeless involution is an involution group.
(c) If a direct summand of a group has an involution, then the group has an involution.

Proof : (a) Let $G=H \oplus K$, where H and K are groups with involutions $*_{H}$ and $*_{K}$, respectively. Then for every $g=(h, k) \in G$, where $h \in H$ and $k \in K$,define the involution $*_{G}$ on G by

$$
g^{*_{G}}=\left(h^{*_{H}}, k^{*_{K}}\right) .
$$

Because of the unique representation of each element, $*_{G}$ becomes a unary operation on G. Further,

$$
\left.\left(g^{*_{G}}\right)^{*_{G}}=\left(\left(h^{*_{H}}\right)^{*_{H}},\left(k^{*_{K}}\right)^{*_{K}}\right)\right)=(h, k)=g .
$$

Assume that $g_{i} \in G$, with $g_{i}=\left(h_{i}, k_{i}\right)$, where $h_{i} \in H$ and $k_{i} \in K$. Then

$$
\begin{aligned}
\left(g_{1}+g_{2}\right)^{*_{G}} & =\left(\left(h_{1}+h_{2}\right)^{* H},\left(k_{1}+k_{2}\right)^{* K}\right)=\left(\left(h_{1}^{*_{H}}+h_{2}^{*_{H}}\right),\left(k_{1}^{* K}+k_{2}^{*_{K}}\right)\right) \\
& =\left(h_{1}^{* H}, k_{1}^{*_{K}}\right)+\left(h_{2}^{*_{H} H}, k_{2}^{* K}\right)=g_{1}^{* G}+g_{2}^{* G} .
\end{aligned}
$$

Hence $*_{G}$ is an involution on G;it is in fact the changeless involution on G.
The proof can analogously be extended to finite as well as to arbitrary direct sums.
(b) Let $G=H \oplus K$. Set $H^{\prime}=H \oplus 0$ and $K^{\prime}=0 \oplus K$. Clearly, H^{\prime} and K^{\prime} are direct summands and subgroups of G. Assume that $*$ is the changeless involution on G. Then $\left.*\right|_{H^{\prime}}$ (involution on G restricted to $\left.H^{\prime}\right)$ is an involution on H^{\prime} and $\left.*\right|_{K^{\prime}}$ is an involution on K^{\prime}. Also, $H \stackrel{*}{\cong} H^{\prime}$ and $K \stackrel{*}{\cong} K^{\prime}$. Hence (b) is proved.
(c) Let $G=H \oplus K$ and H be a group with an involution $*_{H}$. Then for every $g=(h, k) \in G$, where $h \in H$ and $k \in K$, define an operation $*_{G}$ on G by

$$
g^{*_{G}}=\left(h^{*_{H}}, k\right) .
$$

Clearly, $*_{G}$ is the changeless involution on G.

Parts (a) and (b) of Lemma 2.3 can easily be extended to rings, subrings and ideals. But for part (c) we need the following modification.

Corollary 2.4. Let $R=A \oplus B$, where A and B are rings in which B is commutative. Then R has a (changeless) involution if and only if G has an involution.

Proof: One way is clear from Lemma 2.3-(b). Assume that A has an involution $*_{A}$. Define $*_{R}$ on R by

$$
r^{* R}=\left(a^{* A}, b\right)
$$

Then, $*_{R}$ is a unary operation on R and for $r_{1}=\left(a_{1}, b_{1}\right), r_{2}=\left(a_{2}, b_{2}\right) \in R$,

$$
\left(r_{1} r_{2}\right)^{*_{R}}=\left(\left(a_{1} a_{2}\right)^{*_{A}}, b_{1} b_{2}\right)=\left(\left(a_{2}^{*_{A}} a_{1}^{*_{A}}\right), b_{2} b_{1}\right)=r_{2}^{*_{R} R} r_{1}^{*_{R}} .
$$

The rest is as in Lemma 2.3-(c).

3. Cyclic Groups with Involution

Let G be an infinite cyclic group. Following [8], there are two involutions on G, the identity involution and the involution $a^{*}=-a$; of taking inverse. If G is a finite cyclic group of order n, then $\operatorname{Aut}(G)$ consists of all automorphisms, α_{k} : $a \rightarrow k a$, where $1 \leq k \leq n$ and $(k, n)=1$. Moreover,

$$
\operatorname{Aut}(G) \cong U\left(\mathbb{Z}_{n}\right)
$$

(the multiplicative group of units of the ring $\not \mathbb{Z}_{n}$). Since

$$
\alpha_{n-1}: a \rightarrow(n-1) a
$$

is the only automorphism of order $2, \operatorname{Aut}(G)$ has only two automorphisms of order two; the identity mapping and α_{n-1} (of taking inverse), so G has only two involutions.

From this introduction, we note that every cyclic group has two involutions; namely the identity mapping and the mapping of taking inverse. Moreover, every subgroup of a cyclic group is closed under these involutions.

Proposition 3.1. Let G be an additive abelian group, $G=H \oplus K$, and let H and K be cyclic subgroups of G. If $(|H|,|K|) \neq 1$, then
(a) G has exactly four involutions, namely:

$$
g^{*}=(h, k), g^{*}=(-h, k), g^{*}=(h,-k), g^{*}=(-h,-k) \text { and } g^{*}=(h, k) .
$$

(b) Every subgroup of G is closed under involution.

Proof : (a) By Lemma 2.3, H and K are *-subgroups. Since H and K are cyclic, H and K,each, has two involutions; the identity involution and $*: a \rightarrow$ $-a$. Hence again by Lemma 2.3, G has exactly the given four involutions.
(b) By Theorem 8.1 in [4], any subgroup H of G is a direct sum of two cyclic subgroups, or it is cyclic. Hence by $(a), H$ is a *-subgroup.

The following immediate result gives the number of involutions of abelian groups.

Corollary 3.2. Let G be an additive abelian group. If $G=\bigoplus_{i=1}^{n} H_{i}$, where each H_{i} is a cyclic subgroup of G such that $\left(\left|H_{i}\right|,\left|H_{j}\right|\right) \neq 1,1 \leq i, j \leq n$, then G has 2^{n} involutions.

Proposition 3.3. Let R be a ring with involution such that $R^{+}=G$. Then R has only the identity involution in case any one of the following holds:
(1) G is a cyclic group.
(2) G is a direct sum of cyclic subgroups.

Proof : (1) Let G be cyclic. Since R is an involution ring, G has either the identity involution or the involution $*: a \rightarrow-a$. However, $-(a b) \neq(-b)(-a)$, for all $a, b \in R$. Hence R has the identity involution only.
(2) If $G=H \oplus K$, and H and K are cyclic subgroups of G, then by Proposition 3.1, G has four involutions. But then again by (1), G has only one involution.

Definition 3.4. By a^{*}-cyclic group H, we mean a *-group generated by one element.

This means that,

$$
H=(a)^{*}=\left(a, a^{*}\right)=(a)+\left(a^{*}\right) .
$$

Let G be a cyclic group, then $G=(a)=\left(a^{*}\right)$ and $G=(a)+\left(a^{*}\right)$, so G is a *-cyclic group. The converse of this fact is not always true.

For example in the group

$$
\left(M_{2 \times 2}\left(\mathbb{Z}_{3}\right),+\right)
$$

with the transposed involution, let $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, whence $a^{*}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Obviously, the *-cyclic group $H=(a)+\left(a^{*}\right)$ is not a cyclic group.

Proposition 3.5. Let $G=H \oplus K$. If H and K are ${ }^{*}$-cyclic groups such that $H=(a)^{*}, K=(b)^{*},(|a|,|b|)=1$. Then G is ${ }^{*}$-cyclic.

Proof: The given condition

$$
(|a|,|b|)=1
$$

implies that $(a) \oplus(b)$ is a cyclic group generated by (a, b) and $\left(a^{*}\right) \oplus\left(b^{*}\right)$ is a cyclic group generated by $\left(a^{*}, b^{*}\right)$. But,

$$
G=H \oplus K=(a)+\left(a^{*}\right) \oplus(b)+\left(b^{*}\right)=(a) \oplus(b)+\left(a^{*}\right) \oplus\left(b^{*}\right) .
$$

Hence G is *-cyclic with $G=((a, b))^{*}$.
Proposition 3.6. If G is a *-cyclic group, then any *-subgroup of G is a *-cyclic subgroup.

Proof: A *-cyclic group is either torsion or torsion free.First assume that G is torsion free and let

$$
G=(a)^{*}=\left(a, a^{*}\right) .
$$

If

$$
(a) \cap\left(a^{*}\right) \neq 0,
$$

then $n a^{*}=m a \neq 0$, for some integers m and n. This implies $n a=m a^{*}$. So, $n a-n a^{*}=m a^{*}-m a$, from which $n\left(a-a^{*}\right)=m\left(a^{*}-a\right)=-m\left(a-a^{*}\right)$ and so $(n+m)\left(a-a^{*}\right)=0$. Since G is torsion free, $a-a^{*}=0$ implies $a=a^{*}$, whence $(a) \cap\left(a^{*}\right)=0$ and $G=(a) \oplus\left(a^{*}\right)$.

Secondly assume that G is torsion, $G=(a)+\left(a^{*}\right)$, and $|a|=\left|a^{*}\right|=k$. Let $g \in G, g=m a+n a^{*}$, for some integers m, n. Since $k\left(m a+n a^{*}\right)=0$, it follows that $|g| \leq k$, and a, a^{*} have maximal orders. Hence $G=(a) \oplus\left(a^{*}\right)$, from[6], page 81.Thus in both cases, $G=(a) \oplus\left(a^{*}\right)$.

If $H \leq^{*} G$, then $H=(b) \oplus(c)$, where $(b) \leq(a)$ and $(c) \leq\left(a^{*}\right)$. Then $(b)=(m a)$ and $(c)=\left(n a^{*}\right)$, whence

$$
H=(m a) \oplus\left(n a^{*}\right)
$$

Since H is ${ }^{*}$-subgroup, $m a^{*}+n a \in H$. But $m a^{*} \in\left(n a^{*}\right)$, so $m>n$ and $n a \in(m a)$, so $n>m$. Therefore $n=m$ and

$$
H=(n a) \oplus\left(n a^{*}\right) .
$$

Hence $H=(n a)^{*}$ and H is a *-cyclic subgroup of G.

Proposition 3.7. Let x_{1} and x_{2} be elements of a group G such that a prime $p\left|\left|x_{1}\right|,\left|x_{2}\right|\right.$. If $G=\left(x_{1}\right)^{*} \oplus\left(x_{2}\right)^{*}$, then there exist $y_{1}, y_{2} \in G$ such that $\left(y_{1}\right)^{*} \leq\left(x_{1}\right)^{*}$ and $\left(y_{2}\right)^{*} \leq\left(x_{2}\right)^{*}$.

Proof: Let

$$
G=\left(x_{1}\right)+\left(x_{1}^{*}\right) \oplus\left(x_{2}\right)+\left(x_{2}^{*}\right) .
$$

If p is a prime such that $p\left|\left|x_{1}\right|\right.$, then there exists $y_{1} \in\left(x_{1}\right)$ such that, $\left.p\right|\left|y_{1}\right|$ and $\left|y_{1}\right|$ divides $\left|x_{1}\right|$. Consequently,

$$
\left(y_{1}\right) \leq\left(x_{1}\right) \text { and }\left(y_{1}^{*}\right) \leq\left(x_{1}^{*}\right) .
$$

Similarly there is $y_{2} \in\left(x_{2}\right)$ such that

$$
\left(y_{2}\right) \leq\left(x_{2}\right) \text { and }\left(y_{2}^{*}\right) \leq\left(x_{2}^{*}\right) .
$$

Hence, it is concluded that

$$
\left(y_{1}\right)+\left(y_{1}^{*}\right) \leq\left(x_{1}\right)+\left(x_{1}^{*}\right)
$$

and

$$
\left(y_{2}\right)+\left(y_{2}^{*}\right) \leq\left(x_{2}\right)+\left(x_{2}^{*}\right),
$$

that is, $\left(y_{1}\right)^{*} \leq\left(x_{1}\right)^{*}$ and $\left(y_{2}\right)^{*} \leq\left(x_{2}\right)^{*}$.

4. Strongly principal *-Ideal Ring Groups.

As it is mentioned before that the notion of strongly principal ideal groups for associative rings was introduced and investigated thoroughly in [2] and [3]. Motivated by these concepts, we introduce here strongly principal *-ideal ring groups for rings with involution and study their structural properties by attaching involution on their corresponding ground groups.

Definitions 4.1. Let R be a ring with involution. For some $a \in R$, one may write:

$$
I=\langle a\rangle^{*}=\mathbb{Z} a+\mathbb{Z} a^{*}+a R+R a+R a R+a^{*} R+R a^{*}+R a^{*} R .
$$

Clearly I is an ideal of R closed under involution and is called the principal *-ideal generated by a.

One may deduce that

$$
I=\langle a\rangle+\left\langle a^{*}\right\rangle=\left\langle a, a^{*}\right\rangle .
$$

A ring with ivolution $*$ is a principal ${ }^{*}$-ideal ring if each ${ }^{*}$-ideal is a principal *-ideal. Moreover, we say that a group G is strongly principal ${ }^{*}$-ideal ring group, if G is not nil, and every ring R with involution satisfying $R^{2} \neq 0$, and $G=R^{+}$, is a principal *-ideal ring.

Lemma 4.2. Let $G=H \oplus K, H \neq 0, K \neq 0$, be a strongly principal *-ideal ring group. Then H and K are either both *-cyclic or both nil.

Proof: Suppose that H is not nil. Let S be a ${ }^{*}$-ring with $S^{+}=H$ and S^{2} $\neq 0$ and let T be the zero ring on K. By Corollary 2.5 , the ring direct sum $R=S \oplus T$ is a ring with involution satisfying $R^{+}=G$ and $R^{2} \neq 0$. Since T is a *-ideal in $R, T=\langle x\rangle^{*}$. Clearly $K=T^{+}=(x)^{*}$. Therefore K is not nil. Interchanging the roles of H and K yields that H is *-cyclic.

Corollary 4.3. Let $G=H \oplus K, H \neq 0, K \neq 0$, be a strongly principal *-ideal ring group. Then H and K are ${ }^{*}$-cyclic.

Proof: It suffices to negate that H and K are both nil. Let $R=(G, \cdot)$ be a ring with involution satisfying $R^{2} \neq 0$.

1) Suppose that $R^{2} \subseteq K$. There exist $h_{0} \in H, k_{0} \in K$, such that $R=$ $\left\langle h_{0}+k_{0}\right\rangle^{*}$.

Let $h \in H$, since $h \in R$, there exist integers n and m, and $x \in R^{2}$ such that

$$
h=n\left(h_{0}+k_{0}\right)+m\left(h_{0}+k_{0}\right)^{*}+x .
$$

However, $x \in K$, so

$$
h=n h_{0}+m h_{0}^{*}
$$

and H is ${ }^{*}$-cyclic, contradicting the fact that H is nil.
2) Suppose that $R^{2} \nsubseteq K$. For all $g_{1}, g_{2} \in G$, define $g_{1} \circ g_{2}=\pi_{H}\left(g_{1} \cdot g_{2}\right)$, where π_{H} is the natural projection of G onto H. Since

$$
\left(g_{1} \circ g_{2}\right)^{*}=\left(\pi_{H}\left(g_{1} \cdot g_{2}\right)\right)^{*}=\pi_{H}\left(g_{1} \cdot g_{2}\right)^{*}=\pi_{H}\left(g_{2}^{*} \cdot g_{1}^{*}\right)=g_{2}^{*} \circ g_{1}^{*}
$$

hence $S=(G, \circ)$ is a ring with involution satisfying $S^{2} \subseteq H$. The argument employed in (1) yields that K is *-cyclic which contradicts the fact that K is nil.

Theorem 4.4. Let $G \neq 0$ be a torsion group. If G is cyclic or $G \cong$ $\left(x_{1}\right) \oplus\left(x_{2}\right)$, where $x_{1} \neq x_{2},\left|x_{1}\right|=\left|x_{2}\right|=p$ is a prime, then G is strongly principal ${ }^{*}$-ideal ring group.

Proof : Assume that either G is cyclic or as given in the hypothesis. Then by Proposition. 3.3, any ring R with $R^{+}=G$ has only the identity involution. By [2, Theorem 4.2.3] , G is strongly principal *-ideal ring group.

Theorem 4.5. Let G be a torsion strongly principal *-ideal ring group. Then G is ${ }^{*}$-cyclic group or $G=\left(x_{1}\right)^{*} \oplus\left(x_{2}\right)^{*}$, with $\left|x_{i}\right|=p$, a prime, where $i=1,2$.

Proof : Suppose that G is a strongly principal *-ideal ring group. Let G be indecomposable. Then by [2, Corollary 1.1.5], $G \cong \mathbb{Z}_{p^{n}}, p$ a prime, $1 \leq n \leq$ ∞. If $n=\infty$, then G is divisible by [2, Proposition.1.1.3] and so G is nil, by [2, Theorem 2.1.1], which is a contradiction. Hence G is cyclic and so *-cyclic.

Next, suppose that $G=H \oplus K, H \neq 0, K \neq 0$, by Lemma 4.2, either H and K are both *-cyclic or both nil. If H and K are nil, then they are both divisible, so G is nil, by [2, Theorem 2.1.1] which is again a contradiction. Therefore $G=\left(x_{1}\right)^{*} \oplus\left(x_{2}\right)^{*}$, with $\left|x_{i}\right|=n_{i}, i=1,2$. If $\left(n_{1}, n_{2}\right)=1$, then G is *-cyclic, by Proposition. 3.5. Otherwise, let p be a prime divisor of $\left(n_{1}, n_{2}\right)$. Then by Proposition. 3.7,

$$
G=\left(y_{1}\right)^{*} \oplus\left(y_{2}\right)^{*} \oplus H
$$

with

$$
\left|y_{i}\right|=p^{m_{i}}, i=1,2, \text { and } 1 \leq m_{1} \leq m_{2}
$$

Since $\left(y_{1}\right)^{*} \oplus\left(y_{2}\right)^{*}$ is neither * cyclic nor nil, $H=0$ by Lemma 4.2. The products

$$
y_{i} \cdot y_{j}=p^{m_{2}--1} y_{2}, y_{i} \cdot y_{j}^{*}=0 \text { where } i, j=1,2
$$

induce a *-ring structure R on G with $R^{2} \neq 0$. Therefore, $R=\left\langle s_{1} y_{1}+s_{2} y_{2}\right\rangle^{*}$, s_{1} and s_{2} are integers. Every element $x \in R$ has the form:

$$
x=k_{x} s_{1} y_{1}+\left(k_{x} s_{2}+m_{x} p^{m_{2}-1}\right) y_{2}+k_{x}^{\prime} s_{1} y_{1}^{*}+\left(k_{x}^{\prime} s_{2}+m_{x}^{\prime} p^{m_{2}-1}\right) y_{2}^{*}
$$

where $k_{x}, m_{x}, k_{x}^{\prime}$, and m_{x}^{\prime} are integers. In particular,

$$
y_{1}=k_{y_{1}} s_{1} y_{1}, \text { and } y_{2}=\left(k_{y_{2}} s_{2}+m_{y_{2}} p^{m_{2}-1}\right) y_{2} .
$$

Hence if $m_{2}>1$, then

$$
k_{y_{1}} s_{1} \equiv 1(\bmod p), \text { and } k_{y_{2}} s_{2}+m_{y_{2}} p^{m_{2}-1} \equiv 1(\bmod p),
$$

which imply that $p \nmid k_{y_{1}}$ and $p \nmid s_{2}$. However

$$
k_{y_{1}} s_{2}+m_{y_{1}} p^{m_{2}-1} \equiv 0(\bmod p)
$$

So either $p \mid k_{y_{1}}$ or $p \mid s_{2}$ which is a contradiction. Therefore $m_{1}=m_{2}=1$.

Theorem 4.6. Let G be a torsion group which is either *- cyclic or $G \cong\left(x_{1}\right)^{*} \oplus\left(x_{2}\right)^{*}$ with $\left|x_{i}\right|=p$, a prime, where $i=1,2$. Then for any ${ }^{*}$-ring R with $R^{+}=G, R$ is a principal ${ }^{*}$-ideal ring.

Proof : By Proposition. 3.6, non trivial *-cyclic groups are clearly principal *-ideal ring groups. Let

$$
G=\left(x_{1}\right)^{*} \oplus\left(x_{2}\right)^{*}
$$

with

$$
\left|x_{i}\right|=p, i=1,2
$$

and let R be a ${ }^{*}$-ring with $R^{+}=G$ and $R^{2} \neq 0$. If I is a proper ${ }^{*}$-ideal in R, then $|I|=1, p$, or p^{2}, and so I is a ${ }^{*}$ - ideal generated by one element, we may assume that $R \neq<x_{i}>^{*}, i=1,2$. Hence

$$
<x_{i}>^{*+}=\left(x_{j}\right)^{*}
$$

for $i=1,2$. This implies the following three relations:
$x_{i} x_{j}=k_{i} x_{i}, \quad 0 \leq k_{i}<p$, if $i=j, i=1,2$, either $k_{1} \neq 0$ or $k_{2} \neq 0$,

$$
x_{i} x_{j}=0, \text { if } i \neq j, \quad i, j=1,2,
$$

and

$$
x_{i}^{*} x_{j}=0, \text { for all } i, j=1,2 .
$$

Put

$$
I=\left\langle x_{1}+x_{2}\right\rangle^{*} .
$$

Suppose that $k_{1} \neq 0$. Let r, s be integers such that $r k_{1}+s p=1$. Then

$$
r x_{1}\left(x_{1}+x_{2}\right)=r k_{1} x_{1}=(1-s p) x_{1}=x_{1}
$$

and

$$
r\left(x_{1}+x_{2}\right)^{*} x_{1}^{*}=r k_{1} x_{1}^{*}=(1-s p) x_{1}^{*}=x_{1}^{*} .
$$

Hence $x_{1} \in I$ and $x_{1}^{*} \in I$, so

$$
\left(x_{1}+x_{2}\right)-x_{1}=x_{2} \in I
$$

and

$$
\left(x_{1}+x_{2}\right)^{*}-x_{1}^{*}=x_{2}^{*} \in I .
$$

Therefore $I=R$. If $k_{2} \neq 0$, then the above argument, reversing the roles of the indices 1,2 again yields $I=R$.

Theorem 4.7. There are no mixed strongly principal ${ }^{*}$-ideal ring groups.
Proof : Let G be a mixed strongly principal ${ }^{*}$-ideal ring group. G is decomposable by [2, Corollary.1.1.5], so by Lemma 4.2, $G=H \oplus K, H \neq$ $0, K \neq 0$, with H and K both *-cyclic, or both nil.

1) Suppose that H and K are both nil. There are no mixed nil groups by [2, Theorem 2.1.1]. So, we may assume that H is a torsion group, and that K is torsion free. Let R be a ${ }^{*}$-ring with $R^{+}=G$ and $R^{2} \neq 0$. Clearly H is a *-ideal in R and so $H=\langle h\rangle^{*}$. Let $|h|=m$, then $m H=0$. By [2, Theorem 2.1.1], H is divisible, and therefore not bounded, a contradiction.
2) Suppose that $H=(x)^{*}$ and $K=(e)^{*}$ with $|x|=n$, and $|e|=\infty$. The products

$$
x^{2}=x e=e x=e^{*} x=e x^{*}=x e^{*}=x^{*} e=0 \text { and } e^{2}=n e
$$

induce a ${ }^{*}$-ring structure R on G satisfying $R^{2} \neq 0$. Therefore there exist integers s and t such that $R=\langle s x+t e\rangle^{*}$. Every $y \in R$ is of the form

$$
y=m_{y} s x+\left(m_{y}+u_{y} n\right) t e+m_{y}^{\prime} s x^{*}+\left(m_{y}^{\prime}+u_{y}^{\prime} n\right) t e^{*},
$$

with $m_{y}, m_{y}^{\prime}, u_{y}$ and u_{y}^{\prime} integers. In particular, $\left(m_{e}+u_{e} n\right) t=1$. Hence $t=$ ± 1. Therefore, $m_{x}+u_{x} n=0$ and so $n \mid m_{x}$. However, $x=m_{x} s x=0$, is a contradiction.

Theorem 4.8. Let G be a torsion free strongly principal *-ideal ring group. Then G is either indecomposable, or is the direct sum of two nil groups.

Proof: By Lemma 4.2. it suffices to negate that

$$
G=\left(x_{1}\right)^{*} \oplus\left(x_{2}\right)^{*}, \quad x_{i} \neq 0, i=1,2 .
$$

Suppose this is so, the products:

$$
\begin{gathered}
x_{i} x_{j}=3 x_{i} \text { and } x_{i}^{*} x_{j}=0 \text { for } i=j=1,2, \\
x_{i} x_{j}=x_{i}^{*} x_{j}=0, \text { for } i \neq j
\end{gathered}
$$

induce a ring structure R on G with involution * satisfying $R^{2} \neq 0$. Therefore there exist nonzero integers k_{1}, k_{2} such that

$$
R=\left\langle k_{1} x_{1}+k_{2} x_{2}\right\rangle^{*} .
$$

Every $x \in R$ is of the form:

$$
x=\left(r_{x}+3 s_{x}\right) k_{1} x_{1}+\left(r_{x}+3 t_{x}\right) k_{2} x_{2}+\left(r_{x}^{\prime}+3 s_{x}^{\prime}\right) k_{1} x_{1}^{*}+\left(r_{x}^{\prime}+3 t_{x}^{\prime}\right) k_{2} x_{2}^{*}
$$

where $r_{x}, r_{x}^{\prime}, s_{x}, s_{x}^{\prime}, t_{x}, t_{x}^{\prime}$ are integers.From

$$
r_{x_{1}}+3 s_{x_{1}}= \pm 1
$$

it follows that

$$
r_{x_{1}} \equiv \pm 1(\bmod 3)
$$

However,

$$
r_{x_{1}}+3 t_{x_{1}}=0
$$

implies

$$
r_{x_{1}} \equiv 0(\bmod 3),
$$

which is a contradiction.
Lemma 4.9. Let G and H be torsion free groups with $G \stackrel{*}{\cong} H$. Then G is a strongly principal ${ }^{*}$-ideal ring group if and only if H is.

Proof : Let $f: H \longrightarrow G$ be a *-isomorphism such that G is a strongly principal *-ideal ring group. Let $R=(H, \cdot)$ be a ring with involution $*$ such that $R^{2} \neq 0$. The product

$$
g_{1} \circ g_{2}=f\left(h_{1} \cdot h_{2}\right)
$$

where, $g_{1}=f\left(h_{1}\right)$ and $g_{2}=f\left(h_{2}\right)$, for all $g_{1}, g_{2} \in G$, induces a ring structure $S=(G, \circ)$ with $S^{2} \neq 0$. Then G is a group with involution ∇. Since

$$
\left(g_{1} \circ g_{2}\right)^{\nabla}=\left[f\left(h_{1} \cdot h_{2}\right)\right]^{\nabla}=f\left(h_{1} \cdot h_{2}\right)^{*}=f\left(h_{2}^{*} \cdot h_{1}^{*}\right)=g_{2}^{\nabla} \circ g_{1}^{\nabla} .
$$

Hence S has an involution. Let $I \triangleleft^{*} R$, then $f(I) \triangleleft^{\nabla} S$ and there exists $g \in G$ such that $f(I)=\langle g\rangle^{\nabla}$, with $g=f(h), h \in H$. We claim that $I=\langle h\rangle^{*}$. Clearly $\langle h\rangle^{*} \subseteq I$. Let $x \in I$, then $f(x) \in\langle g\rangle^{\nabla}$ and so

$$
f(x)=n g^{\nabla}+m g+g \circ y_{1}+g^{\nabla} \circ y_{2}+z_{1} \circ g+z_{2} \circ g^{\nabla}
$$

where m, n are integers and $y_{1}=f\left(h_{1}^{\prime}\right), y_{2}=f\left(h_{2}^{\prime}\right), z_{1}=f\left(h_{1}^{\prime}\right)$ and $z_{2}=f$ $\left(h_{2}^{\prime}\right) \in G$.Thus

$$
\begin{aligned}
f(x) & =n f\left(h^{*}\right)+m f(h)+f\left(h \cdot h_{1}^{\prime}\right)+f\left(h^{*} \cdot h_{2}^{\prime}\right)+f\left(h_{1}^{\prime} \cdot h\right)+f\left(h_{2}^{\prime} \cdot h^{*}\right) \\
& =f\left(n h^{*}+m h+h \cdot h_{1}^{\prime}+h^{*} \cdot h_{2}^{\prime}+h_{1}^{\prime} \cdot h+h_{2}^{\prime} \cdot h^{*}\right)
\end{aligned}
$$

which concludes that $x \in\langle h\rangle^{*}$. Hence $I=\langle h\rangle^{*}$.
Theorem 4.10: Let G be a torsion group. Then the following are equivalent:
(1) G is bounded
(2) G is a principal *-ideal ring group.

Proof : $(1) \Rightarrow(2)$: Suppose that $n G=0$ and n is a positive integer. Then

$$
G=\underset{p \mid n}{\oplus}\left[\underset{\alpha_{k}}{\oplus} \mathbb{Z}_{p^{k}}\right]
$$

where p is a prime with $p^{k} \mid n$ and α_{k} a cardinal number , by [2, Proposition 1.1.9]. For each $p^{k} \mid n$, put

$$
H_{p^{k}}=\underset{\alpha_{k}}{\oplus} \mathbb{Z}_{p^{k}} .
$$

Then

$$
G=\underset{p^{k} \mid n}{\oplus} H_{p^{k}},
$$

and there exists a commutative principal ideal ring $R_{p^{k}}$ with unity and

$$
R_{P^{k}}^{+}=H_{p^{k}}
$$

for all $p^{k} \mid n$, by [5, Lemma 122.3]. The ring direct sum

$$
R=\underset{p^{k} \mid n}{\oplus} R_{p^{k}}
$$

is a principal *-ideal ring with the identity involution satisfying $R^{+}=G$ and $R^{2} \neq 0$.
$(2) \Rightarrow(1)$: Let R be a principal *-ideal ring with $R^{+}=G$. Then $R=\langle x\rangle^{*}$ and $n=|x|$. So $n G=0$.

Theorem 4.11: Let G be a mixed group. Then
(1) If G is a principal *-ideal ring group, then G_{t} is bounded and G / G_{t} is a principal ${ }^{*}$-ideal ring group.
(2) Conversely, if G_{t} is bounded and if there exists a unital principal *-ideal ring with additive group G / G_{t}, then G is a principal ${ }^{*}$ - ideal ring group.

Proof : (1) Let R be a principal *-ideal ring with $R^{+}=G$. Since G_{t} is a *-ideal in $R, G_{t}=\langle x\rangle^{*}$ and $n G_{t}=0, n=|x|$. Now $G=G_{t} \oplus H$ and $H \cong G / G_{t}$ by [2, Proposition. 1.1.2]. Now

$$
R=\langle a+y\rangle^{*}, a \in G_{t}, 0 \neq y \in H
$$

Suppose that $R^{2} \subseteq G_{t}$ and let $h \in H$. Then there exist integers k_{n}, k_{n}^{\prime} such that,

$$
h=k_{n} y+k_{n}^{\prime} y^{*}+b,
$$

with $b \in R^{2}$. Since $R^{2} \subseteq G_{t}, b=0$, and

$$
h=k_{n} y+k_{n}^{\prime} y^{*} .
$$

Therefore $H=(y)^{*}$. By Proposition 3.6, H is a principal *- ideal ring group.
If $R^{2} \nsubseteq G_{t}$, then $\bar{R}=R / G_{t}$ is a principal *-ideal ring with $\bar{R}^{+} \cong G / G_{t}$, and $\bar{R}^{2} \neq 0$.
(2) Conversely, suppose that G_{t} is bounded, and that there exists a unital principal ${ }^{*}$-ideal ring T with $T^{+}=G / G_{t}$. Hence

$$
G \cong G_{t} \oplus G / G_{t}
$$

by [2, Proposition. 1.1.2]. There exists a principal *-ideal ring S with unity and ${ }^{*}$ is the identity involution such that $S^{+}=G_{t}$, from [5, Lemma 122.3]. Let

$$
R=S \oplus T
$$

with e, f the unities of S and T, respectively. Then R is a ring with involution *, by Corollary 2.5. Let I be a *-ideal in R, then

$$
I=(I \cap S) \oplus(I \cap T)
$$

Now, $I \cap S \triangleleft^{*} S$ and so

$$
I \cap S=\langle x\rangle^{*} .
$$

Similarly

$$
I \cap T=<y>^{*}
$$

Clearly,

$$
\langle x+y\rangle^{*} \subseteq I
$$

However,

$$
x=e(x+y) \in\langle x+y\rangle^{*}, x^{*}=e(x+y)^{*} \in\langle x+y\rangle^{*}
$$

and

$$
y=f(x+y) \in\langle x+y\rangle^{*}, y^{*}=f(x+y)^{*} \in\langle x+y\rangle^{*} .
$$

Hence we conclude that $I=\left\langle x+y>^{*}\right.$.

References

[1] U.A. Aburawash, On involution rings,East-West J.Math ,Vol. 2, No. 2, (2000), 102-126.
[2] S. Feigelstock, Additive Groups of Rings, Pitman (APP), 1983.
[3] S. Feigelstock, Z. Schlussel, Principal ideal and noetherian groups, Pac. J. Math, 75 (1978), 85-87.
[4] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York, 1970.
[5] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973.
[6] T.W. Hungerford, Algebra, Springer Science+Business Media, 1974.
[7] N.V. Loi, On the structure of semiprime involution rings, Contr. to General Algebra, Proc. Krems Cons., North-Holland (1990), 153-161.
[8] D.J.S. Robinson, A Course in the Theory of Groups, Springer, New York, 1991.

Received: December 25, 2007

